[1]
F.K.J.V. Pedroso, D.A. Prudente, A.C. R Bueno, E.C. Machado and R.V. Ribeiro, Drought tolerance in citrus trees is enhanced by rootstock-dependent changes in root growth and carbohydrate availability. Environ. Exp. Bot. 101 (2014) 26-35.
DOI: 10.1016/j.envexpbot.2013.12.024
Google Scholar
[2]
J. Wishart, T.S. George, L.K. Brown, P.J. White, G. Ramsay, H. Jones and P.J. Gregory, Field phenotyping of potato to assess root and shoot characteristics associated with drought tolerance. Plant Soil 378 (2014) 351-363.
DOI: 10.1007/s11104-014-2029-5
Google Scholar
[3]
M.F. Arndal, I.K. Schmidt, J. Kongstad, C. Beier and A. Michelsen, Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem. Funct. Plant Biol. 41 (2014) 1-10.
DOI: 10.1071/fp13117
Google Scholar
[4]
U. Zang, M. Goisser, K.H. Häberle, R. Matyssek, E. Matzner, and W. Borken, Effects of drought stress on photosynthesis, rhizosphere respiration, and fine-root characteristics of beech saplings, A rhizotron field study. J. Plant Nutr. Soil Sci. 177 (2014).
DOI: 10.1002/jpln.201300196
Google Scholar
[5]
G. Moser, B. Schuldt, D. Hertel, V. Horna, H. Coners, H. Barus and C. Leuschner, Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought. Glob. Change Biol. 20 (2014).
DOI: 10.1111/gcb.12424
Google Scholar
[6]
K.H. Lee and S. Jose, Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecol. Manage. 185 (2003) 263-273.
DOI: 10.1016/s0378-1127(03)00164-6
Google Scholar
[7]
P. Holub, I. Tůma and K. Fiala, Effect of fertilization on root growth in the wet submontane meadow. Plant Soil Environ. 59 (2013) 342-347.
DOI: 10.17221/162/2013-pse
Google Scholar
[8]
C.Y. Wang, W. X. Liu, Q.X. Li, D.Y. Ma, H. F. Lu, W. Feng, Y.X. Xie, Y.J. Z and T.C. Guo, Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Res. 165 (2014).
DOI: 10.1016/j.fcr.2014.04.011
Google Scholar
[9]
H. Majdi and P. Andersson, Fine root production and turnover in a Norway spruce stand in northern Sweden: effects of nitrogen and water manipulation. Ecosystems 8 (2005) 191-199.
DOI: 10.1007/s10021-004-0246-0
Google Scholar
[10]
J. Wang, C. Xu, S. Gao, X. Han and D. Ju, Effects of water and nitrogen utilized by means of dripping on growth of root and canopy and matter distribution in spring wheat. Adv. J. Food Sci. Technol. 5 (2013) 474-481.
DOI: 10.19026/ajfst.5.3294
Google Scholar
[11]
K.A. Vogt, D.J. Vogt, P.A. Palmiotto, P. Boon, J. O'Hara and H. Asbjornsen, Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187 (1996) 159-219.
DOI: 10.1007/bf00017088
Google Scholar
[12]
S. Usman, S.P. Singh, Y. S Rawat and S.S. Bargali, Fine root decomposition and nitrogen minerralisation patterns in Quercus leucotrichophora and Pinus roxburghii forest in central Himalaya. Forest Ecol. Manag. 131 (2000) 191-199.
DOI: 10.1016/s0378-1127(99)00213-3
Google Scholar
[13]
S. Cheng, P. Widden, C. Missier, Light and tree size influence belowground development in yellow birch and sugar maple. Plant Soil 270 (2005) 321-330.
DOI: 10.1007/s11104-004-1726-x
Google Scholar
[14]
S. Cheng, Lorentzian model of roots for understory yellow birch and sugar maple saplings. J. Theor. Biol. 246 (2007) 309-322.
DOI: 10.1016/j.jtbi.2006.12.026
Google Scholar
[15]
M.R. Bakker, R. Kerisit, K. Verbist and C. Nys, Effects of liming on rhizoshere chemistry and growth of fine roots and of shoots of sessile oak (Quercus petraea). Plant Soil 217 (1999) 243-255.
DOI: 10.1007/978-94-017-3469-1_40
Google Scholar
[16]
R.M.A. Block, K.C.J. Van Rsse andJ.D. Knight, A review of fine root dynamics in Populus plantations. Agroforest Syst. 67 (2006) 73-84.
DOI: 10.1007/s10457-005-2002-7
Google Scholar
[17]
R. Trubat, J. Cortina, A. Vilagrosa, Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus L. Trees-Struct. Funct. 20 (2006) 334-339.
DOI: 10.1007/s00468-005-0045-z
Google Scholar
[18]
Y.J. Hu, X.L. Wei and J.Y. Li, The influence of different water management on seedling growth and physiology of Catalpa bungei at rapid growth stage. Journal of Fujian Forestry Science and Technology 36 (2009) 153-157. (in Chinese).
Google Scholar
[19]
L.P. Wang, Z.Y. Yan, J.Y. Li, J.H. Wang, Q. He, Y. Su, B. Chen, J.W. Ma and J.L. Dong, Effects of exponential fertilization on biomass allocation and root morphology of Catalpa bungei clones. Acta Ecologica Sinica 32 (2012).
DOI: 10.5846/stxb201203040288
Google Scholar
[20]
R.K. Lu, Analysis method of soil agrochemistry. Chinese Agricultural Science and Technology Press, Beijing, China, 2000. (in Chinese).
Google Scholar
[21]
W.Y. Dong, J. Qin, J.Y. Li, Y. Zhao, L.S. Nie and Z.Y. Zhang, Interactions between soil water content and fertilizer on growth characteristics an d biomass yield of Chinese white poplar (Populus tomentosa Carr. ) seedlings. Soil Sci. Plant Nutr. 57 (2011).
DOI: 10.1080/00380768.2010.549445
Google Scholar
[22]
R. Wang, J.Y. Li, F.Q. Zhang, B. Zhu and W. Pan, Growing dynamic root system of Aquilaria malaccensis and Aquilaria sinensis seedlings in response to different fertilizing methods. Acta Ecologica Sinica 31 (2011) 98–106. (in Chinese).
Google Scholar
[23]
B. Singh and G. Singh, Effects of controlled irrigation on water potential, nitrogen uptake and biomass production in Dalbergia sissoo seedlings. Environ. Exp. Bot. 55 (2006) 209-219.
DOI: 10.1016/j.envexpbot.2004.11.001
Google Scholar
[24]
X.Q. Zhang, K.H. Wu and D. Murach, A review of methodsor fine-root production and turnover of trees. Acta Ecologica Sinica 20 (2000) 875–883. (in Chinese).
Google Scholar
[25]
J. Liu, F. An, K Yuan, Q.B. Chen and Z.H. Wang, Application of SmartRoot system for determining morphological parameters of fine roots of Hevea brasiliensis. Chinese Journal of Plant Ecology 37 (2013) 786-792. (in Chinese).
DOI: 10.3724/sp.j.1258.2013.00082
Google Scholar
[26]
K.J. Nadelhoffer, The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol. 147 (2000) 131-139.
DOI: 10.1046/j.1469-8137.2000.00677.x
Google Scholar
[27]
R.J. Norby and R.B. Jackson, Root dynamics and global change: seeking an ecosystem perspective. New Phytol. 147 (2000), 3-12.
DOI: 10.1046/j.1469-8137.2000.00676.x
Google Scholar
[28]
A.J. Burton, K.S. Pregitzer and R.L. Hendrick, Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125 (2000) 389-399.
DOI: 10.1007/s004420000455
Google Scholar
[29]
J.J. Hendricks, R.L. Hendrick, C.A. Wilson, R.J. Mitchell, S.D. Pecot and D. Guo, Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J. Ecol. 94 (2006) 40-57.
DOI: 10.1111/j.1365-2745.2005.01067.x
Google Scholar
[30]
J.L. Liu, L. Mei, J.C. Gu, X.K. Quan, Z.Q. Wang, Effects of nitrogen fertilization on fine root biomass and morphology of Fraxinus mandshurica and Larix gmelinii: A study with in-growth core approach. Chinese Journal of Ecology 28 (2009).
Google Scholar
[31]
J.J. Hendricks, K.J. Nadelhoffer and J.D. Aber, Assessing the role of fine roots in carbon and nutrient cycling. Trends Ecol. Evol. 8 (1993) 174-178.
DOI: 10.1016/0169-5347(93)90143-d
Google Scholar
[32]
H. Majdi, Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in northern Sweden. Tree Physiol. 21 (2001) 1057-1061.
DOI: 10.1093/treephys/21.14.1057
Google Scholar
[33]
C.C. Kern, A.L. Friend, J.M.F. Johnson and M.D. Coleman, Fine root dynamics in a developing Populus deltoides plantation. Tree Physiol. 24 (2004) 651-660.
DOI: 10.1093/treephys/24.6.651
Google Scholar
[34]
Y. Son, J.H. Hwang: Fine root biomass, production and turnover in a fertilized Larix leptolepis plantation in central Korea. Ecol. Res. 18 (2003) 339-346.
DOI: 10.1046/j.1440-1703.2003.00559.x
Google Scholar
[35]
Z.Q. Wang, Y.D. Zhang and Q.C. Wang, Effects of Nitrogen and Phosphorus on Root Growth of Juglans mandshurica. Journal of Northeast Forestry University 27 (1999) 1-4. (in Chinese).
Google Scholar
[36]
M. Wu, W. H. Zhang, J. Y. Zhou, C. Ma, W.J. Han, Effects of drought stress on growth, physiological and biochemical parameters in fine roots of Quercus variabilis Bl. seedlings. Acta Ecologica Sinica 34 (2014) 4223-4233. (in Chinese).
DOI: 10.5846/stxb201212101774
Google Scholar
[37]
X.P. Zhang, Y. Yin, L.Z. Yu, L.H. Yao, H. Ying, N. Zhang, Influence of water and soil nutrients on biomass and productivity of fine tree roots: a review. Journal of Zhejiang Forestry College 27 (2010) 606-613. (in Chinese).
Google Scholar
[38]
Z.Q. Wang, Y.D. Zhang and Q.C. Wang, Responses of Fraxinus manchurica seedling roots to heterogeneous nutrients and water distribution. Bulletin of Botanical Research 19 (1999) 329-334. (in Chinese).
Google Scholar
[39]
A. Hodge The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol. 162(2004) 9-24.
DOI: 10.1111/j.1469-8137.2004.01015.x
Google Scholar
[40]
A. Hodge, G. Berta, C. Doussan, F. Merchan and M. Crespi, Plant root growth, architecture and function. Plant Soil. 321(2009)153-187.
DOI: 10.1007/s11104-009-9929-9
Google Scholar
[41]
Y.P. Zheng, C.Y. Xin, C.B. Wang, X.S. Sun, W.Q. Yang, S.B. Wan, Y.M. Zheng, H. Feng, D.X. Chen, X.W. Sun, and Z.F. Wu, Effects of phosphorus fertilizer on root morphology, physiological characteristics and yield in peanut (Arachis hypogaea). Chinese Journal of Plant Ecology 37(2013).
DOI: 10.3724/sp.j.1258.2013.00081
Google Scholar
[42]
D.M. Zhang, X. Song, L.J. Zhang, X.W. Hu, X.L. Chen and Y.H. Zhang, Effects of phosphorus fertilizing on growth and root morphology of Amorpha fruticosa. Pratacultural Science 31(2014) 1767-1773. (in Chinese).
Google Scholar