[1]
Koeller RC, Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech, 51, pp.299-307 (1984).
Google Scholar
[2]
Sugimoto N, Burgers equation with a fractional derivative: hereditary effects on nonlinear acoustic waves. J. Flu. Mech, 225, pp.631-653 (1991).
DOI: 10.1017/s0022112091002203
Google Scholar
[3]
Anastasio TJ, The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biological cybernetics, 72, pp.69-679 (1994).
DOI: 10.1007/bf00206239
Google Scholar
[4]
Laskin N, Fractional market dynamics, 229th WE Heraeus Seminar on Economics Dynamics from the Physics Point of View, 287, pp.482-492 (2000).
Google Scholar
[5]
Jianbing Hu, Yan Han, Lingdong Zhao, Synchronizing chaotic systems using control based on a special matrix structure and extending to fractional chaotic systems. Commun Nonlinear Sci Numer Simulat, 15, pp.115-123 (2010).
DOI: 10.1016/j.cnsns.2009.03.017
Google Scholar
[6]
Qigui Yang, Caibin Zeng, Chaos in fractional conjugate Lorenz system and its scaling attractors. Commun Nonlinear Sci Numer Simulat, 15, pp.4041-4051 (2010).
DOI: 10.1016/j.cnsns.2010.02.005
Google Scholar
[7]
Jing Bai, Yongguang Yu, Sha Wang, Yu Song, Modified projective synchronization of uncertain fractional order hyperchaotic systems. Commun Nonlinear Sci Numer Simulat, 17, pp.1921-1928 (2012).
DOI: 10.1016/j.cnsns.2011.09.031
Google Scholar
[8]
Christophe Letellier, Luis A Aguirre, Dynamical analysis of fractional order Rössler and modified Lorenz systems. Physics Letters A, 377, pp.1707-1719 (2013).
DOI: 10.1016/j.physleta.2013.05.006
Google Scholar
[9]
Mohammad Saleh Tavazoei, Toward Searching Possible Oscillatory Region in Order Space for Nonlinear Fractional-Order Systems. Journal of Computational and Nonlinear Dynamics, 9, pp.021011-1 (2014).
DOI: 10.1115/1.4025477
Google Scholar
[10]
Yong Xu, Hua Wang, Yongge Li, Bin Pei, Image encryption based on synchronization of fractional chaotic systems. Commun Nonlinear Sci Numer Simulat, 19, pp.3735-3744 (2014).
DOI: 10.1016/j.cnsns.2014.02.029
Google Scholar
[11]
Produlubny I, Fractional differential equations. San Diego: Academic Press (1999).
Google Scholar
[12]
Diethelm K, Ford NJ, Freed Ad, A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations. Nonlinear Dynamics, 29, pp.3-22 (2002).
Google Scholar
[13]
Dadras S, Momeni HR, A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors. Phys Lett A, 373, pp.3637-3642, (2009).
DOI: 10.1016/j.physleta.2009.07.088
Google Scholar
[14]
Eckmann JP, Ruelle D, Theory of Chaos and Strange Attractors. Rev. Mod. Phys. 5, pp.617-656, (1985).
DOI: 10.1103/revmodphys.57.617
Google Scholar