[1]
Blaschke, T., Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing, 2010. 65(1): pp.2-16.
DOI: 10.1016/j.isprsjprs.2009.06.004
Google Scholar
[2]
Jeong, Y., et al., Image Compression System Using Colorization and Meanshift Clustering Methods, in Ubiquitous Information Technologies and Applications, Y. Jeong, et al., Y. Jeong, et al. Editors. 2014, Springer Berlin Heidelberg. pp.165-172.
DOI: 10.1007/978-3-642-41671-2_22
Google Scholar
[3]
Zhao, Y., et al., Classification of high spatial resolution imagery using improved Gaussian Markov random-field-based texture features. Geoscience and Remote Sensing, IEEE Transactions on, 2007. 45(5): pp.1458-1468.
DOI: 10.1109/tgrs.2007.892602
Google Scholar
[4]
Hu, Z., et al., A Spatially-Constrained Color – Texture Model for Hierarchical VHR Image Segmentation. IEEE Geoscience and Remote Sensing Letters, 2013. 10(1): pp.120-124.
DOI: 10.1109/lgrs.2012.2194693
Google Scholar
[5]
Cheng, Y., Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995. 17(8): pp.790-799.
DOI: 10.1109/34.400568
Google Scholar
[6]
Comaniciu, D., V. Ramesh and P. Meer. Real-time tracking of non-rigid objects using mean shift. in Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on. 2000: IEEE.
DOI: 10.1109/cvpr.2000.854761
Google Scholar
[7]
Comaniciu, D. .M.P., Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002. 24(5): pp.603-619.
DOI: 10.1109/34.1000236
Google Scholar
[8]
Chen, X., et al., Improved mean shift target tracking based on self-organizing maps. Signal, Image and Video Processing, 2014: pp.1-10.
Google Scholar
[9]
Yang, Y. and S. Newsam. Comparing SIFT descriptors and Gabor texture features for classification of remote sensed imagery. in Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on. 2008: IEEE.
DOI: 10.1109/icip.2008.4712139
Google Scholar