Saliency Detection Based on Multi-Scale Superpixel and Dictionary Learning

Article Preview

Abstract:

In recent years, saliency detection has been gaining increasing attention since it could significantly boost many content-based multimedia applications. In this paper, we propose a visual saliency detection algorithm based on multi-scale superpixel and dictionary learning . Firstly, in each scale space, we extract the boundaries as the training samples to learn a dictionary through sparse coding and dictionary learning methods. Then, according to reconstruction error of each superpixel, the saliency map is generated for each scale of superpixel. Finally, some saliency maps from different scale spaces are fused together to generate the final saliency map. The experimental results show that the proposed algorithm can highlight the salient regions uniformly and performs better compared with the other five methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

348-351

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, (2010).

DOI: 10.1109/cvpr.2010.5539929

Google Scholar

[2] D. Klein and S. Frintrop. Center-surround divergence of feature statistics for salient object detection. In ICCV, (2011).

DOI: 10.1109/iccv.2011.6126499

Google Scholar

[3] L. Itti. Automatic foveation for video compression using a neurobiological model of visual attention. IEEE TIP, (2004).

DOI: 10.1109/tip.2004.834657

Google Scholar

[4] T. Chen, M. Cheng, P. Tan, A. Shamir, and S. Hu. Sketch2photo: Internet image montage. ACM Trans. on Graphics, (2009).

DOI: 10.1145/1618452.1618470

Google Scholar

[5] L. Grady, M. Jolly, and A. Seitz. Segmenation from a box. In ICCV, (2011).

Google Scholar

[6] V. Lempitsky, P. Kohli, C. Rother, and T. Sharp. Image segmentation with a bounding box prior. In ICCV, (2009).

DOI: 10.1109/iccv.2009.5459262

Google Scholar

[7] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE PAMI, (1998).

DOI: 10.1109/34.730558

Google Scholar

[8] N. Bruce and J. Tsotsos. Saliency based on information maximization. NIPS, (2006).

Google Scholar

[9] X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In CVPR, (2007).

Google Scholar

[10] Y. Zhai and M. Shah. Visual attention detection in video sequences using spatiotemporal cues. InACM Multimedia, pages 815–824, (2006).

DOI: 10.1145/1180639.1180824

Google Scholar

[11] M. M. Cheng, G. X. Zhang, N. J. Mitra, X. Huang, and S. M. Hu. Global contrast based salient region detection. In CVPR, (2011).

DOI: 10.1109/cvpr.2011.5995344

Google Scholar

[12] R. Achanta, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. Slicsuperpixels. Technical report, EPFL, Tech. Rep. 149300, (2010).

Google Scholar

[13] J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, and Y. Ma. Robust Face Recognition via Sparse Representation. IEEE TPAMI, 31(2): 210–227, (2009).

DOI: 10.1109/tpami.2008.79

Google Scholar

[14] Yan Q, Xu L, Shi J, et al. Hierarchical saliency detection[C]/Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on. IEEE, 2013: 1155-1162.

DOI: 10.1109/cvpr.2013.153

Google Scholar

[15] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency tuned salient region detection. In CVPR, (2009).

DOI: 10.1109/cvpr.2009.5206596

Google Scholar

[16] S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, (2010).

DOI: 10.1109/cvpr.2010.5539929

Google Scholar