Influence of Bi3.15Nd0.85Ti3O12 Buffer Layer on Structure and Electrical Properties of Bi0.94Ce0.06Fe0.97Ti0.03O3 Thin Films

Article Preview

Abstract:

Bi0.94Ce0.06Fe0.97Ti0.03O3 and Bi0.94Ce0.06Fe0.97Ti0.03O3/Bi3.15Nd0.85Ti3O12 double-layered thin films were fabricated via sol-gel process on Pt/Ti/SiO2/Si substrates. The influence of Bi3.15Nd0.85Ti3O12 buffer layer on microstructure and electrical properties of Bi0.94Ce0.06Fe0.97Ti0.03O3 thin films were investigated in detail. Well-saturated P-E hysteresis loops can be obtained in Bi0.94Ce0.06Fe0.97Ti0.03O3 films with Bi3.15Nd0.85Ti3O12 buffer. The remnant polarization (2Pr) of the double-layered thin films is 112 μC/cm2. The coercive field (2Ec) of double-layered films is 672 kV/cm, which is much lower than that of the Bi0.94Ce0.06Fe0.97Ti0.03O3 thin films. The leakage current density of Bi0.94Ce0.06Fe0.97Ti0.03O3/Bi3.15Nd0.85Ti3O12 double-layered thin films is 4.12×10-5 A/cm2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-55

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Balke, S. Choudhury, S. M. Jesse, Huijben, Y.H. Chu, A.P. Baddorf, L.Q. Chen, R. Ramesh, S.V. Kalinin: Nature Nanotechnology Vol. 4 (2009), p.868.

DOI: 10.1038/nnano.2009.293

Google Scholar

[2] J.G. Wu, J. Wang, D.Q. Xiao, and J.G. Zhu: Applied Material and Interfaces Vol. 4 (2012), p.1182.

Google Scholar

[3] H.L. Liu, M. K. Lin, Y.R. Cai, C.K. Tung and Y.H. Chu: Applied Material and Interfaces Vol. 103 (2013), p.181907.

Google Scholar

[4] G.H. Dong, G.Q. Tan, Y.Y. Luo, W.L. Liu, H.J. Ren, A. Xia: Materials Letters Vol. 136 (2014), p.314.

Google Scholar

[5] J.P. Xu, R.J. Zhang, Z.H. Chen, Z.Y. Wang, F. Zhang, X. Yu, A.Q. Jiang, Y.X. Zheng, S.Y. Wang and L.Y. Chen: Nanoscale Research Letters Vol. 9 (2014), p.188.

Google Scholar

[6] Y. Lin, H.B. Yang, M. Liu, G. Zhang: Materials Research Bulletin Vol. 51 (2014), p.44.

Google Scholar

[7] G.H. Dong, G.Q. Tan, Y.Y. Luo, W.L. Liu, H.L. Ren, A. Xia: Materials Letters Vol. 118 (2014), p.31.

Google Scholar

[8] J.G. Wu, S. Qiao, J. Wang, D.Q. Xiao, and J.G. Zhu: Applied Physics Letters Vol. 102 (2013), p.052904.

Google Scholar

[9] V. Singh, S. Sharma, M. Kumar, R.K. Kotnala, R.K. Dwivedi: Journal of Magnetism and Magnetic Materials Vol. 349 (20 14), p.364.

Google Scholar

[10] J.L. Xu, D. Xie, C. Yin, T.T. Feng, X.W. Zhang, G. Li, H.M. Zhao, Y.F. Zhao, S. Ma, T.L. Ren, Y.J. Guan, X.S. Gao, Y.G. Zhao: Journal of Applied Physics Vol. 114 (2013), p.154103.

DOI: 10.1063/1.4825216

Google Scholar

[11] J. Liu, M.Y. Li, L. Pei, B.F. Yu, D.Y. Guo, X.Z. Zhao: Journal of Physics D: Applied Physics Vol. 42 (2009), p.115409.

Google Scholar

[12] H.R. Liu, Z.L. Liu, K.L. Yao: Journal of Sol-Gel Science and Technology Vol. 41 (2007), p.123.

Google Scholar

[13] J. Zeng, Z.H. Tang, M.H. Tang, D.L. Xu, Y.G. Xiao, B.W. Zeng, L.Q. Li and Y.C. Zhou: Journal of Sol-Gel Science and Technology (2014), in press.

Google Scholar

[14] J.H. Li, Y. Qiao, X.L. Liu, C.J. Nie, C.J. Lu, Z.X. Xu, S.M. Wang, N.X. Zhang, D. Xie, H.C. Yu, and J.Q. Li: Applied Physics Letters Vol. 85 (2004), p.3193.

Google Scholar

[15] S.W. Yi, S.S. Kim, J. W. Kim, H.K. Jo, D. Do, W.J. Kim: Thin Solid Films Vol. 517 (2006), p.6737.

Google Scholar

[16] X.M. Chen, G.D. Hu, J. Yan, X. Wang, C.H. Yang and W.B. Wu: Journal of Physics D: Applied Physics Vol. 41 (2012), p.225402.

Google Scholar