Optimization of Poly(phenylene sulfoxide ether sulfide ether) Synthesis by Response Surface Methodology

Article Preview

Abstract:

To increase the molecular weight of poly (phenylene sulfide ether) (PPSE), a novel route has been developed via the reduction of poly (phenylene sulfoxide ether sulfide ether) (PPSOESE) precursor. The synthesis of high molecular weight PPSOESE is essential for the ultimate purpose. Effects of process parameters on preparation of PPSOESE were firstly investigated and the optimization was performed by response surface methodology (RSM). Average number molecular weight (Mn) and Yield of PPSOESE were defined as the experimental responses. The statistical analyses indicate that the most significant factor is monomer concentration, followed by reaction temperature and the interaction of reaction temperature • monomer concentration. Under optimal conditions, the and Yield responses were obtained as 1.78 ×104 ±1.02 % and 93.6±1.3 %, which are in agreement with the predicted values of 1.80 ×104 and 95.4 %, respectively. Structure of PPSOESE was also characterized. The highest intrinsic viscosity and yield of PPSE by the reduction of PPSOESE reached to 0.78 dL/g and 93.2%, respectively, much greater than the reported results. The work is helpful for forthcoming preparation and study of high molecular weight PPSE.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-85

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.S. Lee, J.P. Kim and J.S. Lee: Polymer Vol. 51(2010), p.632.

Google Scholar

[2] D.M. Knauss, J.B. Edson: Polymer Vol. 47 (2006), p.3996.

Google Scholar

[3] C. Berti, A. Cell, E. Marianucci, M. Vannini: Eur Polym J Vol. 42 (2006), p.2562.

Google Scholar

[4] G. Zhang, G.S. Huang, X.J. Wang, S.R. Long, J. Yang: J Polym Res Vol. 18 (2011), p.1261.

Google Scholar

[5] J.T. Edmonds, H.W. Hill, B. Okla, U.S. Patent 3, 354, 129. (1967).

Google Scholar

[6] K.H. Seo, L.S. Park, J.B. Baek, W. Brostow: Polymer Vol. 34 (1993), p.2524.

Google Scholar

[7] J.E. Gill, G.B. Patent 1, 160, 666. (1969).

Google Scholar

[8] F. Tamotsu, K. Takeo, K. Masami, J.P. Patent 4, 704, 2157. (1972).

Google Scholar

[9] F. Yu, D. Genichi, J.P. Patent 46, 027, 255. (1971).

Google Scholar

[10] K. Yamamoto, M. Jikei, Y. Murakami, H. Nishide, E. Tsuchida: J Chem Soc Chem Commun Issue 8 (1991), p.596.

Google Scholar

[11] E. Tscuchida, K. Miyatake, K. Yamamoto: Macromolecules Vol. 31 (1998), p.6469.

Google Scholar

[12] E. Tsuchida, K. Yamamoto, M. Jikei, K. Miyatake: Macromolecules Vol. 26 (1993), p.4113.

Google Scholar

[13] K. Miyatake, A. Haryono, K. Oyaizu, E. Tsuchida: J Macromol Sci Pure Appl Vol. 38 (2001), p.851.

Google Scholar

[14] E. Shouji, K. Yamamoto, E. Tsuchida: Chem Lett Issue 11(1993), p. (1927).

Google Scholar

[15] A.Q. Gu, Z.L. Yu, Y.B. Li: J Appl Polym Sci Vol. 110 (2008), p.61.

Google Scholar

[16] Y.F. Wang, A.S. Hay: Macromolecules Vol. 30 (1997), p.182.

Google Scholar

[17] J.R. Babu, A.E. Brink, M. Konas, J.S. Riffle: Polymer Vol. 35 (1994), p.4949.

Google Scholar

[19] P. Hou, F.S. Cannon, C. Nieto-Delgado, N.R. Brown, X. Gu: Chem Eng J Vol. 223 (2013), p.309.

Google Scholar

[20] M.M. Reddy, A.K. Mohanty, M. Misra: J Mater Sci Vol. 47 (2012), p.2591.

Google Scholar

[21] J.Y. Chen, G.Y. Li, Y. Huang, H.M. Zhang, H. Zhao, T.C. An: Appl Catal B-Environ Vol. 123-124 (2012), p.69.

Google Scholar

[22] F. Gholamian, S. Ghariban-Lavasani, M.M. Garshasbi, M. Ansari, F. Bataghv, A. Moraveji, Z. Ranjbar: Polym Bull Vol. 70 (2013), p.1677.

DOI: 10.1007/s00289-013-0938-8

Google Scholar

[23] V.H. Campos-Requena, B.L. Rivas, M.A. Pérez, D. Contreras, E. Muñoz: Polym Int Vol. 62 (2013), p.548.

Google Scholar

[24] C.P. Zhu, X. Liu: Carbohyd Polym Vol. 92 (2013), p.1197.

Google Scholar

[25] J.F. Chen, D.S. Liu, B. Shi, H. Wang, Y.Q. Cheng, W.J. Zhang: Carbohyd Polym Vol. 93 (2013), p.81.

Google Scholar

[26] A.Q. Gu, Z.C. Li, Z.L. Yu , L.J. Xu: J Appl Polym Sci Vol. 129 (2013), p.3682.

Google Scholar

[27] S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandão, E.G.P. da Silva, L.A. Portugal, P.S. dos Reis: Anal Chim Acta Vol. 59 (2007), p.179.

DOI: 10.1016/j.aca.2007.07.011

Google Scholar

[28] S.M. Pourmortazavi, M. Rahimi-Nasrabadi, A.A. Davoudi-Dehaghani, A. Javidan, M.M. Zahedi, S.S. Hajimirsadehi: Mater Res Bull Vol. 47 (2012), p.1045.

DOI: 10.1016/j.materresbull.2011.12.048

Google Scholar

[29] H.X. Liu, K. Wang, P. Li, C. Zhang, D.Z. Du, Y. Hu, X. Wang: Opt Laser Eng Vol. 50 (2012), p.440.

Google Scholar

[30] D. Kishore, A.M. Kayastha: Food Chem Vol. 134 (2012), p.1650.

Google Scholar

[31] S. Ahmadi, M. Manteghian, H. Kazemian, S. Rohani, J.T. Darian: Powder Technol Vol. 228 (2012), p.163.

DOI: 10.1016/j.powtec.2012.05.012

Google Scholar

[32] K.P. Singh, S. Gupta, A.K. Singh, S. Sinha: J Hazard Mater Vol. 186 (2011, p.1462.

Google Scholar