[1]
R. C. Arnold, J. Meyer-ter-Vehn. Inertial confinement fusion driven by heavy-ion beams. Rep. Prog. Phys. 50 (1987) 559.
DOI: 10.1088/0034-4885/50/5/002
Google Scholar
[2]
E.D. Cantero, G.H. Lantschner, J.C. Eckardt, N.R. Arista. Velocity dependence of the energy loss of very slow proton and deuteron beams in Cu and Ag. Phys. Rev. A 80 (2009) 032904.
DOI: 10.1103/physreva.80.032904
Google Scholar
[3]
M. Shimizu, M. Kaneda, T. Hayakawa, H. Tsuchida, A. Itoh. Stopping cross sections of liquid water for MeV energy protons. Nucl. Instrum. Methods B 267 (2009) 2667.
DOI: 10.1016/j.vacuum.2009.11.019
Google Scholar
[4]
M. Shimizu, T. Hayakawa, M. Kaneda, H. Tsuchida, A. Itoh. Stopping cross-sections of liquid water for 0. 3–2. 0 MeV protons. Vacuum 84 (2010) 1002.
DOI: 10.1016/j.vacuum.2009.11.019
Google Scholar
[5]
O. Boine-Frankenheim and J. D'Avanzo. Stopping power of ions in a strongly magnetized plasma. Phys. Plasmas 3 (1996) 792.
DOI: 10.1063/1.871779
Google Scholar
[6]
H. B. Nersisyan, M. Walter, and G. Zwicknagel. Stopping power of ions in a magnetized two-temperature plasma. Phys. Rev. E 61 (2000) 7022.
DOI: 10.1103/physreve.61.7022
Google Scholar
[7]
J. D'Avanzo, I. Hofmann, and M. Lontano, Effective charge in heavy ion stopping in classical collisionless plasmas. Phys. Plasmas 3 (1996) 3885.
DOI: 10.1063/1.871576
Google Scholar
[8]
H. B. Nersisyan, G. Zwicknagel, and C. Toepffer. Energy loss of ions in a magnetized plasma: Conformity between linear response and binary collision treatments. Phys. Rev. E 67 (2003) 026411.
DOI: 10.1103/physreve.67.026411
Google Scholar
[9]
O. Boine-Frankenheim. Nonlinear stopping power of ions in plasmas. Phys. Plasmas 3 (1996) 1585.
DOI: 10.1063/1.872017
Google Scholar
[10]
G. Zwicknagel. Nonlinear energy loss of heavy ions in plasma. Nucl. Instrum. Methods Phys. Res. B 197 (2002) , 22.
Google Scholar