The Interference Study of Green-House Gases for an Ammonia Sensor

Article Preview

Abstract:

This paper describes a preliminary study of the possibility for greenhouse interference during ammonia measurement in the 200nm-230 nm region. An absorption spectrum for ammonia was compared with the greenhouse gases absorption lines to theoretically justify that there were no discernible interference effects during the ammonia concentration measurements. It was theoretically found that the primary greenhouse gases namely ozone, methane and nitrous oxide have no significant interference for ammonia sensing in the 200nm-210 nmregion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

244-247

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Rhodes Whitmore Fairbridge, Saskia Jelgersma, The Greenhouse Effects, Greenhouse effect, sea level, and drought, part I, Kluwer Academic Publisher, 1990, p.4.

DOI: 10.1007/978-94-009-0701-0_7

Google Scholar

[2] Manap, H., Dooly, G., O'Keeffe, S., Lewis, E., Ammonia detection in the UV region using an optical fiber sensor, Sensors, 2009 IEEE, pp.140-145, Oct. 2009, ISBN: 978-1-4244-4548-6.

DOI: 10.1109/icsens.2009.5398215

Google Scholar

[3] M. Schweizer-Berberich, S. Strathmann, U. Weimar, R. Sharma, A. Seube, A. Peyre-Lavigne and W. Göpel, Strategies to avoid VOC cross-sensitivity of SnO2-based CO sensors, Sensors and Actuators B: Chemical, Vol . 58, (1999), pp.318-324.

DOI: 10.1016/s0925-4005(99)00149-5

Google Scholar

[4] OECD environmental outlook, Organisation for Economic Co-operation and Development, OECD publication services, 2001, p.161.

Google Scholar

[5] H. Manap, G. Dooly, S. O'Keeffe, E. Lewis, Cross-sensitivity evaluation for ammonia sensing using absorption spectroscopy in the UV region, Sensors and Actuators B: Chemical, March (2010).

DOI: 10.1016/j.snb.2010.03.057

Google Scholar

[6] MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules, Website page; http: /www. atmosphere. mpg. de/enid/2295.

Google Scholar

[7] F.Z. Chen, D.L. Judge, C.Y.R. Wu, and J. Caldwell, Low and room temperature Photoabsorption cross sections of NH3 in the UV region, Planet. Space Sci. 47, (1999) 261-266.

DOI: 10.1016/s0032-0633(98)00074-9

Google Scholar

[8] Ed Austin, Adriaan van Brakel, Marco N. Petrovich and David J. Richardson, Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell, Sensors and Actuators B: Chemical, Volume 139, Issue 1, 20 May 2009, pp.30-34.

DOI: 10.1016/j.snb.2008.07.028

Google Scholar

[9] Gerhard Neurauter, Ingo Klimant and Otto S. Wolfbeis, Microsecond lifetime-based optical carbon dioxide sensor using luminescence resonance energy transfer, Analytica Chimica Acta, Volume 382, Issues 1-2, 23 February 1999, pp.67-75.

DOI: 10.1016/s0003-2670(98)00748-x

Google Scholar

[10] R. Leuning and K. M. King, Comparison of eddy-covariance measurements of CO2 fluxes by open- and closed-path CO2 analysers Boundary-Layer Meteorology, Volume 59, Number 3, 1991, pp.297-311.

DOI: 10.1007/bf00119818

Google Scholar

[11] S-I. Ohira, K. Toda, S-I. Ikebe, P.K. Dasgupta, Hybrid microfabricated device for field measurement of atmospheric sulfur dioxide, Anal. Chem. Vol. 74, 2002, p.5890–5896.

DOI: 10.1021/ac025940b

Google Scholar

[12] B.H. Timmer, K.M. v. Delft, R.P. Otjes, W. Olthuis, A. v. d. Berg, A miniaturized measurement system for ammonia in air, Anal. Chim. Acta 507 (1) 2004, pp.139-145.

DOI: 10.1016/j.aca.2003.09.038

Google Scholar

[13] Gerard Dooly, Elfed Lewis and Colin Fitzpatrick, On-board monitoring of vehicle exhaust emissions using an ultraviolet optical fibre based sensor, Journal of Optics, A Pure Application, Opt. 9 (2007) S24–S31.

DOI: 10.1088/1464-4258/9/6/s05

Google Scholar