Optimal Energy Storage Sizing for Wind Power Applications

Article Preview

Abstract:

Wind energy is now widely used in many countries as a clean energy. In order to make better use of wind energy, we need to study various factors affecting the utilization of wind energy. If we can better predict the wind, we can make full use of wind energy. Where, combing an energy storage system with a wind farm is an effective way to mitigate fluctuations and improve the predictability of wind power. Energy storage sizing has been an important part in wind farm planning. This paper presents an optimization model for determining the capacity of a lead-acid battery integrated with a wind farm. The energy storage capacity calculated in the model gives the lowest cost and has a significant impact on remedying the prediction error. Besides, the charge and discharge operation can also be displayed in our model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

278-283

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. D. Parker. Lead-acid battery energy storage systems for electricity supply networks, J. Power Sources, 2001, 100, 18-28.

DOI: 10.1016/s0378-7753(01)00880-1

Google Scholar

[2] F. Díaz-González; A. Sumper; O. Gomis-Bellmunt and R. Villafá?la- ?Robles. A review of energy storage technologies for wind power applications, Renewable and Sustainable Energy Reviews, 2012, 16, 2154-2171.

DOI: 10.1016/j.rser.2012.01.029

Google Scholar

[3] T. Brekken; A. Yokochi; A. Jouanne, Z. Yen; H. Hapke and D. Halamay. Optimal energy storage sizing and control for wind power power applications, IEEE Trans. Sustainable Energy, 2011, 2 69-77.

DOI: 10.1109/tste.2010.2066294

Google Scholar

[4] A. Ingram. Storage options and sizing for utility scale integration of wind energy plants, in Proc. Int. Solar Energy Conf. 2005, Orlando, FL, Aug. 2005, pp.843-851.

DOI: 10.1115/isec2005-76181

Google Scholar

[5] R. Saidur; M.R. Islam; N.A. Rahim; K.H. Solangi. A review on global wind energy policy, Renewable and Sustainable Energy Reviews 2010, 14, 1744-1762.

DOI: 10.1016/j.rser.2010.03.007

Google Scholar

[6] Dennis Y.C. Leung; Yuan Yang. Wind energy development and its environment impact: A review, Renewable and Sustainable Energy Reviews, 2012, 16, 1031-1039.

DOI: 10.1016/j.rser.2011.09.024

Google Scholar

[7] B. K. Sahu, M. Hiloidhari, D. C. Baruah. Global trend in wind power with special focus on the top five wind power producing countries. Renewable and Sustainable Energy Reviews, 2013, 19, 348-359.

DOI: 10.1016/j.rser.2012.11.027

Google Scholar

[8] Lu, Xi, Michael B. McElroy, and Juha Kiviluoma. Global potential for wind-generated electricity, Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10933-10938.

DOI: 10.1073/pnas.0904101106

Google Scholar

[9] T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi. Wind Energy Handbook. New York: Wiley, (2001).

Google Scholar

[10] G. M. J. Herbert, S. Iniyan, E. Sreevalsan, and S. Rajapandian. A review of wind energy technologies, Renewable Sustainable Energy Reviews, 2007, 11, 1117-1145.

DOI: 10.1016/j.rser.2005.08.004

Google Scholar

[11] G. Cimuca, C. Saudemont, B. Robyns, and M. Radulescu, Control and performance evaluation of a flywheel energy-storage system associated to a variable-speed wind generator, IEEE Trans. Ind. Electron., vol. 53, no. 4, pp.1074-1085, Jun. (2006).

DOI: 10.1109/tie.2006.878326

Google Scholar

[12] Bludszuweit, H.; Domínguez-Navarro, J.A. A probabilistic method for energy storage sizing based on wind power forecast uncertainty. IEEE Trans. Power Syst. 2011, 26, 1651-1658.

DOI: 10.1109/tpwrs.2010.2089541

Google Scholar

[13] Li, J.; Wei, W.; Xiang, J. A simple sizing algorithm for stand-alone PV/wind/battery hybrid microgrids. Energies 2012, 5, 5307-5323.

DOI: 10.3390/en5125307

Google Scholar

[14] G. Giebel, G. Kariniotakis, and R. Brownsword. (2003, Sep. 11). The state-of-the-art in short-term prediction of wind power. A literature overview, Deliverable Report D1. 1 of the Anemos Project (ENK5-CT-2002-00665) [Online]. Available: http: /anemos. cma. fr.

Google Scholar

[15] M. Lei, L. Shiyan, J. Chuanwen, Liu Hongling and Z. Yan. A review on the forecasting of wind speed and generated power, Renewable and Sustainable Energy Reviews, 2009, 13, 915-920.

DOI: 10.1016/j.rser.2008.02.002

Google Scholar

[16] S. Soman, H. Zareipour, O. Malik and P. Mandal. A review of wind power and wind speed forecasting methods with different time horizons, in 42nd North American Power Symposium (NAPS), Arlington, Texas, USA, September 26-28, 2010, Pages 1-8.

DOI: 10.1109/naps.2010.5619586

Google Scholar

[17] A. Costa, A. Crespo, J. Navarro, G. Lizcano, H. Madsen and E. Feitosa. A review on the young history of the wind power short-term prediction, Renewable and Sustainable Energy Reviews, 2008, 12, 1725-1744.

DOI: 10.1016/j.rser.2007.01.015

Google Scholar