Electrospray Coating of a TiO2 Electrode for Dye-Sensitized Solar Cells by a Post-Treatment Method

Article Preview

Abstract:

A mesoporous TiO2 photo-electrode for dye-sensitized solar cells (DSSCs) was fabricated by an electrospray method using a solution of dispersed TiO2 nanocrystals (P25). A mesoporous TiO2 disk has a larger surface area than P25. The sub micrometer-sized TiO2 disk promotes light scattering, thereby increasing the photocurrent conversion efficiency. However, the electrosprayed TiO2 electrodes have many pores and disconnected electron pathways. Thus, we investigated the enhanced electrical contact of an electrosprayed TiO2 electrode using a hot-pressing process and a titanium tetrachloride (TiCl4) treatment process. After optimizing the post-treatment process of an electrosprayed TiO2 electrode, the cell shows conversion efficiency up to 6% at standard sunlight of AM 1.5.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-55

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 fills, Nature, Vol. 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[2] M. Grätzel, Review Dye-sensitized solar cells, J. Photochem. Photobiol. C, Vol. 4 (2003) 145-153.

Google Scholar

[3] D. Chen, F. Huang, Y. B. Cheng, R. A. Caruso, Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells, Adv. Mater., Vol. 21 (2009) 2206-2210.

DOI: 10.1002/adma.200802603

Google Scholar

[4] L. Yang and W. W. F. Leung, A scattering layer composed of electrosprayed polydispersed-size nanocrystallite TiO2 for high efficiency dye sensitized solar cells, RSC Adv., Vol. 3 (2013) 25707–25710.

DOI: 10.1039/c3ra40865e

Google Scholar

[5] Z. S. Wang, H. Kawauchi, T. Kashima and H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Chem. Reviews, Vol. 248 (2004) 1381-1389.

DOI: 10.1016/j.ccr.2004.03.006

Google Scholar

[6] T. Ma, T Kida, M. Akiyama, K. Inous, S. Tsunematsu, K. Yao, H. Noma and E. Abe, Preparation and properties of nanostructured TiO2 electrode by a polymer organic-medium screen-printing technique, Electrochem. commun., Vol. 5 (2003) 369–372.

DOI: 10.1016/s1388-2481(03)00070-5

Google Scholar

[7] J. H. Kim, S. J. Sung, K. P. Kim and D. K. Hwang, Effect of hot-pressing on an electrospun TiO2 electrode for dye-sensitized solar cells, Appl. phy. exp., Vol. 7 (2014) 072301.

DOI: 10.7567/apex.7.072301

Google Scholar

[8] D. S. Hwang, H. R. Lee, S. Y. Jang, S. M. Jo and D. H. Kim, Y. S. Seo, D. Y. Kim, Electrospray Preparation of Hierarchically-structured Mesoporous TiO2 Spheres for Use in Highly Efficient Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, Vol. 3 (2011).

DOI: 10.1021/am200517v

Google Scholar

[9] Y. X. Xu, M. Skotak and M. Hanna, Electrospray encapsulation of water-soluble protein with polylactide. I. Effects of formulations and process on morphology and particle size, J. Microencapsulation, Vol. 23 (2006) 69-78.

DOI: 10.1080/02652040500435048

Google Scholar

[10] V. Pornsopone, P. Supaphol, R. Rangkupan and S. Tantayanon, Electrospinning of Methacrylate-Based Copolymers: Effects of Solution Concentration and Applied Electrical Potential on Morphological Appearance of As-Spun Fibers, Polym. Eng. Sci., Vol. 45 (2005).

DOI: 10.1002/pen.20354

Google Scholar

[11] C. Burger, B. S. Hsiao and B. Chu, Annu. Nanofibrous Materials and Their Applications, Rev. Mater. Res., Vol. 36 (2006) 333-368.

DOI: 10.1146/annurev.matsci.36.011205.123537

Google Scholar

[12] K. S. Sim, S. J. Sung, H. J. Jo, D. H. Jeon, D. H. Kim and J. K. Kang, Electrochemical Investigation of High-Performance Dye-Sensitized Solar Cells Based on Molybdenum for Preparation of Counter Electrode, Int. J. Electrochem. Sci., Vol. 8 (2013).

DOI: 10.1016/s1452-3981(23)12886-0

Google Scholar

[13] J. Navas, C. Fernandez-Lorenzo, T. Aguilar, R. Alcántara and J. Martín-Calleja, Improving open-circuit voltage in DSSCs using Cu-doped TiO2 as a semiconductor, Physica Status Solidi A, Vol. 209 (2012) 378-385.

DOI: 10.1002/pssa.201127336

Google Scholar

[14] J. Bisquert and V. S. Vikhrenko, Interpretation of the Time Constants Measured by Kinetic Techniques in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar Cells, J. Phys. Chem. B, Vol. 108 (2004) 2313-2322.

DOI: 10.1021/jp035395y

Google Scholar

[15] M. Pan, N. Huang, X. Zhao, J. Fu, and X. Zhong, Enhanced Efficiency of Dye-Sensitized Solar Cell by High Surface Area Anatase-TiO2-Modified P25 Paste, Journal of Nanomaterials, Vol. 2013 (2013) 1-6.

DOI: 10.1155/2013/760685

Google Scholar