Improved COPRAS Method and Application in Material Selection Problem

Article Preview

Abstract:

The aim of this paper is to put forward a new material selection method based on COPRAS method. The method combines the COPRAS method and coefficient of variation method. The new method is simple and easy to use, and coefficient of variation method can objectively determine the attributes weights. Thus it can be easily accepted by decision makers. Finally, a practical example is used to demonstrate the feasibility and effectiveness of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

505-508

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. V. Rao. Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods. (Springer-Verlag, London 2013).

DOI: 10.1007/978-1-4471-4375-8_2

Google Scholar

[2] R. J. Girubha and S. Vinodh. Application of fuzzy VIKOR and environmental impact analysis for material selection of an automotive component. Materials & Design, Vol. 37 (2012), P. 478-486.

DOI: 10.1016/j.matdes.2012.01.022

Google Scholar

[3] A. Shanian and O. Savadogo. A material selection model based on the concept of multiple attribute decision making. Materials and Design Vol. 27 (2006), pp.329-337.

DOI: 10.1016/j.matdes.2004.10.027

Google Scholar

[4] A. Shanian and O. Savadogo. TOPSIS multiple-criteria decision support analysis for material selection of metallic bipolar plates for polymer electrolyte fuel cell. J. Power Sources, Vol. 159 (2006), pp.1095-1104.

DOI: 10.1016/j.jpowsour.2005.12.092

Google Scholar

[5] K. Maniya and M.G. Bhatt. A selection of material using a novel type decisionmaking method: preference selection index method. Materials and Design Vol. 31 (2010), pp.1785-1789.

DOI: 10.1016/j.matdes.2009.11.020

Google Scholar

[6] R.V. Rao. Decision making methodology for material selection using an improved compromise ranking method. Materials and Design Vol. 29 (2008), p.1949-(1954).

DOI: 10.1016/j.matdes.2008.04.019

Google Scholar

[7] A. Kasaei, A. Abedian and A.S. Milani. An application of Quality Function Deployment method in engineering materials selection. Materials & Design, Vol. 55 (2014), pp.912-920.

DOI: 10.1016/j.matdes.2013.10.061

Google Scholar

[8] X. J. Xie. Material selection using TOPSIS combined with grey relation analysis. Applied Mechanics and Materials, Vol. 540 (2014), pp.476-479.

DOI: 10.4028/www.scientific.net/amm.540.476

Google Scholar

[9] L. W. Yang. Projection method for material selection problem with interval numbers. Advanced Materials Research, Vol. 1022 (2014), pp.14-17.

DOI: 10.4028/www.scientific.net/amr.1022.14

Google Scholar

[10] E. K. Zavadskas, A. Kaklauskas and V. Sarka. The new method of multi-criteria complex proportional assessment of projects. Technological and Economic Development of Economy, Vol. 1 (1994), pp.131-139.

Google Scholar

[11] E. K. Zavadskas, A. Kaklauskas, Z. Turskis, and E. J. Tamošaitien. Selection of the effective dwelling house walls by applying attributes values determined at intervals. J Civ Eng Manage, Vol. 14 (2008), p.85–93.

DOI: 10.3846/1392-3730.2008.14.3

Google Scholar

[12] Viteikiene M, Zavadskas EK Evaluating the sustainability of Vilnius city residential areas. J Civ Eng Manage, Vol. 8 (2007), pp.149-155.

Google Scholar

[13] A. Kaklauskas, E. K. Zavadskas, S. Raslanas, R. Ginevicius, A. Komka and P. Malinauskas. Selection of low-e tribute in retrofit of public buildings by applying multiple criteria method COPRAS: a Lithuanian case. Energy Build, Vol. 38 (2006).

DOI: 10.1016/j.enbuild.2005.08.005

Google Scholar

[14] E. K. Zavadskas, A. Kaklauskas, F. Peldschus and Z. Turskis. Multi-attribute assessment of road design solution by using the COPRAS method, Baltic J Road Bridge Eng, Vol. 2 (2007), pp.195-203.

Google Scholar

[15] S. Datta, G. S. Beriha, B. Patnaik and S. S. Mahapatra. Use of compromise ranking method for supervisor selection: a multi-criteria decision making (MCDM) approach. Int J Vocat Tech Educ, Vol. 1 (2009), pp.7-13.

Google Scholar

[16] B. H. Men and C. Liang. Attribute recognition model-based variation coefficient weight for evaluating water quality, Journal of Harbin Institute of Technology, Vol. 37 (2005), pp.1373-1375.

Google Scholar

[17] A. Jahan, M. Bahraminasab and K. L. Edwards. A target-based normalization technique for materials selection. Materials & Design Vol. 35 (2012), pp.647-654.

DOI: 10.1016/j.matdes.2011.09.005

Google Scholar

[18] K. R. Sarfaraz, M. B. Dehghan, A. Abedian and R. Mahmudi. A simplified fuzzy logic approach for materials selection in mechanical engineering design. Materials & Design, Vol. 30 (2009), pp.687-697.

DOI: 10.1016/j.matdes.2008.05.026

Google Scholar

[19] P. Chatterjee, V. M. Athawale and S. Chakraborty. Materials selection using complex proportional assessment and evaluation of mixed data methods. Materials & Design, Vol. 32 (2011), pp.851-860.

DOI: 10.1016/j.matdes.2010.07.010

Google Scholar

[20] M. B. Dehghan, H. Mahmudi, A. Abedian and R. Mahmudi. A novel method for materials selection in mechanical design: Combination of non-linear normalization and a modified digital logic method. Materials & Design, Vol. 28 (2007), pp.8-15.

DOI: 10.1016/j.matdes.2005.06.023

Google Scholar