[1]
M. Kögl, L. Gaul, A boundary element method for transient piezoelectric analysis, Eng. Anal. Bound. Elem. 24 (2000) 591-598.
DOI: 10.1016/s0955-7997(00)00039-4
Google Scholar
[2]
C.Y. Wang, Ch. Zhang, 3-D and 2-D Dynamic Green's functions and time-domain BIEs for piezoelectric solids, Eng. Anal. Bound. Elem. 29 (2005) 454-465.
Google Scholar
[3]
L. Gaul, M. Kogl, M. Wagner, Boundary element methods for engineers and scientists, Springer-Verlag, Berlin, (2003).
Google Scholar
[4]
C.Y. Wang, J.D. Achenbach, Three-dimensional time-harmonic elastodynamic Green's functions for anisotropic solids, Proc. R. Soc. London. A 449 (1995) 441-58.
DOI: 10.1098/rspa.1995.0052
Google Scholar
[5]
M. Dravinski, Y. Niu, Three-dimensional time-harmonic Green's functions for a triclinic full-space using a symbolic computation system, Int. J. Numer. Meth. Engng. 53 (2002) 455-472.
DOI: 10.1002/nme.292
Google Scholar
[6]
V.G. Bazhenov, L.A. Igumnov, Boundary Integral Equations & Boundary Element Methods in treating the problems of 3D elastodynamics with conjugate fields, PhysMathLit, Moscow, 2008 (in Russian).
Google Scholar
[7]
L. Banjai, M. Messner, M. Schanz, Runge-Kutta convolution quadrature for the boundary element method, Comput. Methods Appl. Mech. Engrg. 245-246 (2012) 90-101.
DOI: 10.1016/j.cma.2012.07.007
Google Scholar