[1]
Frenkel Ya.I. On the theory of seismic and seismic-electric phenomena in damp soils / Ya.I. Frenkel / News of AS USSR. Ser. Geography and Geophys. – 1944. – V. 8., № 4. – P. 65-78.
Google Scholar
[2]
Biot, M Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range / M. Biot / J. Acoust. Soc. Am. – 1956. V. 28, № 2. – P. 168-178.
DOI: 10.1121/1.1908239
Google Scholar
[3]
Biot, M Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher-frequency range / M. Biot / J. Acoust. Soc. Am. – 1956. V. 28, № 2. – P. 179-191.
DOI: 10.1121/1.1908241
Google Scholar
[4]
Schanz, M. Wave Propogation in Viscoelastic and Poroelastic Continua / M. Schanz. – Berlin Springer, 2001. – 170 p.
DOI: 10.1007/978-3-540-44575-3
Google Scholar
[5]
Manolis G.D., Beskos D.E. Integral Formulation and Fundamental Solutions of Dynamic Poroelasticity and Thermoelasticity / Ada Mechanica. 1989. № 76. P. 89-104.
DOI: 10.1007/bf01175798
Google Scholar
[6]
Аmenitskiy А.V., Belov А.А., Igumnov L.А., Каrelin I.S. Boundary integral equations for analyzing dynamic problems of three-dimensional poroelasticity. Inter- University collection. Problems of strength and plasticity. N. Novgorod, NNSU Publishers, 2009, Issue. 71, P. 164-171.
DOI: 10.32326/1814-9146-2009-71-1-164-171
Google Scholar
[7]
Belov А.А., Igumnov L.А., Каrelin I.S., Litvinchuk S. Yu. Application of the BIE-method for analyzing boundary-value problems of three-dimensional dynamic visco- and poroelasticity / Electronic Journal «Proc. of MAI ». 2010. Issue № 40. P. 1-20. (in Russian).
Google Scholar
[8]
Bazhenov V.G., Igumnov L.А. Boundary integral equation and boundary-element methods in the analyses of 3-D problems of dynamic elasticity with coupled fields. М.: Fizzmatlit, 2008. – 352 p. (in Russian).
Google Scholar
[9]
Durbin, F. Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate's method / Durbin F. / The Computer Journal. – 1974. – Vol. 17, 4. – P. 371–376. (in Russian).
DOI: 10.1093/comjnl/17.4.371
Google Scholar