Influence of Ammonium in Zinc Oxide Nanostructures Hydrothermally Grown on Glass Substrate

Article Preview

Abstract:

We present the synthesis of ZnO nanostructures grown by the hydrothermal method using the rapid microwave heating process. First, 10 mM solutions of zinc acetate dihydrate and 1-propanol were three cycles spin coated on glass substrates at 2000 rpm by 70 s, 90 s and 90 s, respectively. Second, nanostructures were then grown by dipping the substrates in a solution of zinc nitrate hexahydrate, polyethyleneimine (PEI), hexamethylenetetramine and ammonia. The hydrothermal process were carried out with a commercial microwave at 300, and 600 W power settings during 20 min. The structural and morphological properties were investigated using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The influence of the ammonium concentration in the morphology of the nanostructures was analyzed.Keywords: ZnO, nanostructures, XRD, SEM, spin coating, ammonium, hydrothermal process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

341-345

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. C. look, Materials Science and Engineering B 80, 383 (2001).

Google Scholar

[2] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, j. Pham, R. He, H. J. Choi, Adv. Funct. Mater. 12, 323 (2002).

DOI: 10.1002/1616-3028(20020517)12:5<323::aid-adfm323>3.0.co;2-g

Google Scholar

[3] Z. Chen, Z. Shan, S. Li, C. B. Liang, S. X. Mao, Journal of Crystal Growth 265, 482-486 (2004).

Google Scholar

[4] A. Heidari, H. Younesi, A. A. I. Zinatizadeh, IJE Transactions B: Applications 22, 283-290 (2009).

Google Scholar

[5] Y. Dai, Y. Zhang, Q. K. Li, C. W. Nan, Chem. Phys. Lett. 358, 83 (2002).

Google Scholar

[6] J. Johnson, H. Yan, R. Schaller, L. Haber, R. Saykally, P. Yang, J. Phys. Chem. B 105, 11387 (2001).

Google Scholar

[7] C. Y. Lee, S. Li, P. Lin, T. Y. Tseng, IEEE Trans. Nanotechnol. 5, 216 (2006).

Google Scholar

[8] R. Martins, E. Fortunate, P. Nunes, I. Ferreira, A. Marques, M- Bender, N. Katsarakis, V. Cimalia, C. Kiriakidis, J. Appl. Phys. 96, 1398 (2004).

Google Scholar

[9] Y. Li, F. Qian, J. Xiang, C. M. Lieber, Mater. Today 9, 18 (2006).

Google Scholar

[10] C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, et al. Adv. Mater. 15, 838 (2003).

Google Scholar

[11] W. I. Park, G. C. Yi, M. Y. Kim, S. J. Pennycook, Adv. Mater. 14, 1841 (2002).

Google Scholar

[12] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, et al. Angwe. Chem, Int. Edn. 42, 3031 (2003).

Google Scholar

[13] E. U. Husnu, H. Pritesh, R. Nalin, D. Sharvari, I. William, A. J. A. Gehan, Nanotechnology 19, 255608 (2008).

Google Scholar