[1]
Ooyama, K.V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369-379.
Google Scholar
[2]
Yamasaki, M., 1979: A further study of a CISK mode unaffected by surface friction. J. Meteor. Soc. Japan, 57, 112-132.
Google Scholar
[3]
Smith, R.K., 1997: On the theory of CISK. Quart. J. Roy. Meteor. Soc., 123, 407-418.
Google Scholar
[4]
Palmen, E. H., 1948: On the formation and structure of tropical cyclones. Geophysica , Univ. of Helsinki, Vol. 3, 1948, pp.26-38.
Google Scholar
[5]
Gray, W.M. (1968): A global view of the origin of tropical disturbances and storms, Mon. Wea. Rev., 96, pp.669-700.
DOI: 10.1175/1520-0493(1968)096<0669:gvotoo>2.0.co;2
Google Scholar
[6]
Black, P.G., (1975): Some aspects of tropical storm structure revealed by handheld-camera photographs from space, Skylab Explores the Earth, NASA, pp.417-461.
Google Scholar
[7]
Charney, J.G. and A. EIiassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 68-75.
Google Scholar
[8]
Willoughby, H.E. (1979): Forced secondary circulations in hurricanes, J. Geophys. Res., 84, pp.3173-3183.
DOI: 10.1029/jc084ic06p03173
Google Scholar
[9]
Yamasaki, M., 1996: A study on CISK and cloud systems. Meteor. Res. Notes., 186, 75-96 (in Japanese).
Google Scholar
[10]
Gray, W.M., and D. Shea (1973): The hurricane's inner-core region. Part II: Thermal stability and dynamic characteristics, J. Atmos. Sci., 30, pp.1544-1564.
DOI: 10.1175/1520-0469(1973)030<1565:thicri>2.0.co;2
Google Scholar
[11]
Arakawa, A. and W.H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674-701.
DOI: 10.1175/1520-0469(1974)031<0674:ioacce>2.0.co;2
Google Scholar
[12]
Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340.
Google Scholar
[13]
Jones, S.C., Harr, P.A., Abraham, J., Bosart, L.F., Bowyer, P.J., Evans, J.L., Hanley, D.E., Hanstrum, B.N., Hart, R.E., Lalaurette, F., Sinclair, M.R., Smith, R.K., Thorncroft, C. 2003: The Extratropical Transition of Tropical Cyclones: Forecast Challenges, Current Understanding, and Future Directions. Weather and Forecasting, 18, pp.1052-1092.
DOI: 10.1175/1520-0434(2003)018<1052:tetotc>2.0.co;2
Google Scholar
[14]
Madala, R.V. and A.A. Piacsek, 1975: Numerical simulation of asymmetric hurricane on a β-plane with vertical shear. Tellus, 27, 453-468.
DOI: 10.1111/j.2153-3490.1975.tb01699.x
Google Scholar
[15]
Rosenthal, S.L., 1978: Numerical simulation of tropical cyclone development with latent heat release by the resolvable scales I: Model description and preliminary results. J. Atmos. Sci., 35, 258-271.
DOI: 10.1175/1520-0469(1978)035<0258:nsotcd>2.0.co;2
Google Scholar
[16]
Nasuno, T. and M. Yamasaki, 1997: The effect of surface friction on the mesoscale organization of cumulus convection in tropical cyclones. J. Meteor. Soc. Japan, 75, 907-923.
Google Scholar
[17]
Stevens, B., D.A. Randall, X Lin, and M.T. Montgomery, 1997: Comments on On large-scale circulations in convecting atmospheres, by Kemey A. Emanuel, J. David Neelin and Christophere S. Bretherton (July B, 1994, 120, 111-1143). Quart. J. Roy. Meteor. Soc., 123, 1771-1778.
DOI: 10.1002/qj.49712354216
Google Scholar
[18]
Yamasaki, M., 1977a: A preliminary experiment of the tropical cyclone without parameterizing the effects of cumulus convection. J. Meteor. Soc. Japan, 55, 11-31.
Google Scholar
[19]
Lord, S.J., H.E. Willoughby and J.M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 2836-2848.
DOI: 10.1175/1520-0469(1984)041<2836:roapip>2.0.co;2
Google Scholar
[20]
Murata, A., K. Saito and M. Ueno, 2003: The effects of precipitation schemes and horizontal resolution on the major rainband in typhoon Flo (1990) predicted by the MRI mesoscale nonhydrostatic model. Meteor. Atmos. Phys., 82, 55-73.
DOI: 10.1007/s00703-001-0591-x
Google Scholar