Study on Mercury Methylation in Sediment Using Enriched Stable Isotope Tracer

Article Preview

Abstract:

Methylmercury (MeHg) production from inorganic mercury in natural environment leads to bioaccumulation in fish, putting human being under the risk of exposure. This study investigated the transformation of enriched stable isotope tracer, 199Hg2+, in sediment slurry of the Florida Everglades. Incubation experiments were conducted under four different laboratory conditions. The results suggest that methylation of mercury mainly happened under anaerobic condition, with microbial activity playing the major role. The relative methylation rate was determined to be 1% per day at the first few days, and then this transformation process slowed down. At the end of incubation experiment, totally around 20% of the isotope tracer 199Hg2+ was transformed to its methylated form, Me199Hg. This high potential of mercury methylation partially accounts for the contamination and bioaccumulation of MeHg in the relatively pristine Florida Everglades ecosystem.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3201-3206

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. P. Mason and J. M. Benoit, in: Organometallic Compounds in the Environment (2nd Edition): edited by P. J. Craig/John Wiley & Sons Ltd, West Sussex, England (2003).

Google Scholar

[2] F. M. M. Morel, A. M. L. Kraepiel, and M. Amyot: Annual review of ecology and systematics Vol. 29(1998), pp.543-66.

Google Scholar

[3] J. H. Weber: Chemosphere Vol. 26(1993), pp.2063-77.

Google Scholar

[4] B. Rosenkranz, J. Bettmer, W. Buscher et al.: Applied Organometallic Chemistry Vol. 11(1997), pp.721-725.

Google Scholar

[5] H. Hintelmann and R. D. Evans: Fresenius' Journal of Analytical Chemistry Vol. 358(1997), pp.378-385.

Google Scholar

[6] L. Lambertsson, E. Lundberg, M. Nilsson et al.: Journal of Analytical Atomic Spectrometry Vol. 16(2001), pp.1296-1301.

DOI: 10.1039/b106878b

Google Scholar

[7] H. Hintelmann, R. D. Evans, and J. Y. Villeneuve: Journal of Analytical Atomic Spectrometry Vol. 10(1995), pp.619-24.

Google Scholar

[8] M. Monperrus, E. Tessier, D. Point, K. Vidimova et al.: Estuarine, Coastal and Shelf Science Vol. 72(2007), pp.485-496.

Google Scholar

[9] Q. J. Stober, K. Thornton, R. Jones et al.: South Florida Ecoststem Assessment: phase I/II (USEPA Regin 4, USA 2001).

Google Scholar

[10] G. Liu, Y. Cai, Y. Mao et al.: Environmental Science & Technology Vol. 43(2009), pp.4361-4366.

Google Scholar

[11] Information on http: /www. epa. gov/region4/sesd/sesdpub_completed. html.

Google Scholar

[12] H. Zhang and S. E. Lindberg: Science of the Total Environment Vol. 259(2000), pp.123-133.

Google Scholar

[13] L. B. Cleckner, P. J. Garrison, J. P. Hurley et al.: Biogeochemistry Vol. 40(1998), pp.347-361.

Google Scholar

[14] Y. Mao, G. Liu, G. Meichel et al.: Analytical Chemistry Vol. 80(2008), pp.7163-7168.

Google Scholar

[15] L. Tuominen, T. Kairesalo, and H. Hartikainen: Applied and Environmental Microbiology Vol. 60(1994), pp.3454-3457.

DOI: 10.1128/aem.60.9.3454-3457.1994

Google Scholar

[16] Y. Mao, Y. Yin, Y. Li et al.: Environmental Pollution Vol. 158(2010), pp.3378-3384.

Google Scholar

[17] R. C. Rodriguez Martin-Doimeadios, E. Tessier, D. Amouroux et al.: Marine Chemistry Vol. 90(2004), pp.107-123.

Google Scholar