Adsorption of Bisphenol-A by HDTMA Modified Clinoptilolite

Article Preview

Abstract:

The adsorption of bisphenol-A (BPA) by hexadecyl trimethyl ammonium bromide (HDTMA) modified clinoptilolite was presented. In this paper, the equilibrium adsorption of BPA by HDTMA modified clinoptilolite was described by Freundlich isotherm with a correlation coefficient's square (R2) of 0.988. The kinetics of adsorption was defined by second-order kinetics with a rate constant (Kv) of 1.98 g/mg/h. The absorption rate was fast, and the liquid solid equilibrium was accomplished within 180 minutes. The effects of initial solution pH, and reaction temperatures had been estimated, showing that the adsorption was enhanced gradually by increasing pH value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

717-721

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.A. Staples, P.B. Dorn, G.M. Klecka, S.T. O'Block, L.R. Harris. Chemosphere 36 (1998) 2149–2173.

Google Scholar

[2] Hao, H. Kim, P.C. Chiang, Crit, Rev. Environ. Sci. Technol. 30 (2000) 449–505.

Google Scholar

[3] Wen-Tien Tsai, Chi-Wei Lai, Ting-Yi Su, Journal of Hazardous Materials. B134 (2006) 169-175.

Google Scholar

[4] W.T. Tsai, C.W. Lai, T.Y. Su, J. Hazard. Mater. 134 (2006) 169-175.

Google Scholar

[5] C. Namasivayam, S. Sumithra, Journal of Environmental Management. 74 (2005) 207-215.

Google Scholar

[6] W.T. Tsai, H.C. Hsu, T.Y. Su, K.Y. Lin, C.M. Lin, J. Colloid Interface Sci. 299 (2006) 513.

Google Scholar

[7] F.M. Cao, P.L. Bai, H.C. Li, Y.L. Ma, X.P. Deng, C.S. Zhao, J. Hazard. Mater. 162 (2009) 791.

Google Scholar

[8] T. Asada, K. Oikawa, K. Kawata, S. Ishihara, T. Iyobe, A. Yamada, J. Health Sci. 50 (2004) 588.

Google Scholar

[9] A. Nakanishi, M. Tamai, N. Kawasaki, T. Nakamura, S. Tanada, J. Colloid Interface Sci. 252 (2002) 393.

Google Scholar

[10] B. Pan, D.H. Lin, H. Mashayekhi, B.S. Xing, Environ. Sci. Technol. 42 (2008) 5480.

Google Scholar

[11] L. Alvarez-Cohen, P.L. McCarty, P.V. Roberts, Environ. Sci. Technol. 27 (1993) 2141.

Google Scholar

[12] M.A. Anderson, Environ. Sci. Technol. 34 (2000) 725.

Google Scholar

[13] C. Buttersack, W. Wach, K. Buchholz, J. Phys. Chem. 97 (1993) 11861.

Google Scholar

[14] T. Kawai, K. Tsutsumi, Colloid Polym. Sci. 273 (1995) 787.

Google Scholar

[15] K. Hayakawa, T. Morita, M. Ariyoshi, T. Maeda, I. Satake, J. Colloid. Interface Sci. 177 (1996) 621.

Google Scholar

[16] A. Erdem-Senatalar, J.A. Bergendahl, A. Giaya, R.W. Thompson, Environ. Eng. Sci. 21 (2004) 722.

Google Scholar

[17] M. Sprynskyy, T. Ligor, M. Lebedynets, B. Buszewski, J. Hazard. Mat. 169 (2009) 847–854.

Google Scholar

[18] Y.S. Ho, J.C.Y. Ng, G. McKay, Sep. Sci. Technol. 36 (2001) 241–246.

Google Scholar

[19] Wen-Tien Tsai, Hsin-Chieh Hsu, Ting-Yi Su, Journal of Colloid and Interface Science. 299 (2006) 513–519.

Google Scholar

[20] L. de Pablo-Galán, M.L. Chávez-García, G. Dimas, Mexican Highlands, Mexico, Miner. Mag. 58A (1994) 682–683.

DOI: 10.1180/minmag.1994.58a.2.93

Google Scholar

[21] A. Nakanishi, M. Tamai, N. Kawasaki, T. Nakamura, S. Tanada, J. Colloid Interface Sci. 252 (2002)393–396.

Google Scholar

[22] T. Asada, K. Oikawa, K. Kawata, S. Ishihara, T. Iyobe, J. Health Sci. 50 (2004) 588–593.

Google Scholar

[23] Wen-Tien Tsai, Hsin-Chieh Hsu, Ting-Yi Su, Journal of Colloid and Interface Science. 299 (2006) 513–519.

Google Scholar

[24] Yi Dong, Deyi Wu, Xuechu Chen, Yan Lin. Journal of Colloid and Interface Science. 348 (2010) 585–590.

Google Scholar

[25] G.F. Liu, J. Ma, X.C. Li, Q.D. Qin, J. Hazard. Mater. 164 (2009) 1275.

Google Scholar

[26] Bautista-Toledo, M.A. Ferro-Garcia, C. Moreno-Castilla, F.J. Vegas Fernandez, Environ. Sci. Technol. 39 (2005) 6246.

Google Scholar