Energy Optimal Control of PMSM Drive for Time-Varying Load Torque

Article Preview

Abstract:

Speed and position controller respecting principles of energy optimal control for the drives with permanent magnet synchronous motor and time varying load torque are developed as a contribution to the energy saving and environmental protection. Two approaches to the energy saving controller design are analyzed and compared. The first one is strictly based on energy optimal control theory and derives analytical solutions of the control problem. The second approach for comparison presents approximated solution for the drive’s position controller when the optimal speed trajectory is modified to trapezoidal profile. Results are verified by simulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-75

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Athans, P. L. Falb, R. T. Lacoss, Time-, Fuel-, and energy optimal control of nonlinear norm-Invariant systems", IEEE Trans. on Automatic Control, Vol. 8, Issue 3, July 1963, pp.: 196 – 202.

DOI: 10.1109/tac.1963.1105581

Google Scholar

[2] B. Bose, Energy, environment and advances in power electronics, IEEE Trans. on Power Electronics, Vol. 15, No. 4, July 2000, pp.: 688 – 701.

DOI: 10.1109/63.849039

Google Scholar

[3] A. Isidori, Nonlinear Control Systems, London: Springer-Verlag Berlin, 2001. ISBN 3-5400-19916-3rd edition.

Google Scholar

[4] H. Yu, J. Hou, Z. Zou, Position control of PMSM based on energy-shaping and MTPA principles, Proc. World Congress on intelligent control and automation, Chongqing, China, 2008, pp.6532-6536.

DOI: 10.1109/wcica.2008.4594569

Google Scholar

[5] S. Brock, T. Pajchrowski, Reducing energy losses for fan applications with V/f control of PMSM, Przeglad Elektrotechniczny, vol. 87, 2011, pp.: 89-94.

Google Scholar

[6] M. A. Sheta, V. Agarwal, P. S. V. Nataraj, A new energy optimal control scheme for a separately excited dc motor based incremental motion, International Journal of Automation and Computing, August 2006, pp.: 267-276.

DOI: 10.1007/s11633-009-0267-4

Google Scholar

[7] S. J. Dodds, G. Sooriyakumar, R. Perryman, Sliding mode minimum energy position controller for permanent magnet synchronous motor drives, in WSEAS Trans. on Systems and Control, vol. 3, issue 4, 2008, pp.299-309.

Google Scholar

[8] J. Vittek, P. Bris, Energy saving position control algorithms for PMSM drives with Coulomb and viscous friction, Proc. of IEEE ICCA conf., June 22013, Hangzhou, China, pp.: 1485-1490.

DOI: 10.1109/icca.2013.6564977

Google Scholar

[9] J. Vittek, P. Bris, Z. Biel, M. Hrkel, Energy saving position control algorithms for PMSM drives with quadratic friction, Proc. of IEEE Africon conf., Sept. 2013, Mauritius, pp.: 1001-1006.

DOI: 10.1109/afrcon.2013.6757854

Google Scholar

[10] I. Bivol, C. Vasilache, "The application of Euler – Lagrange method of optimization for electromechanical motion control. The Annals of Dunarea de Joss University of Galati, vol. 3, pp.5-11.

Google Scholar

[11] G. Manolea, Loss-function optimal control of the positioning servomotors with static torque proportional to the speed, " Proc. of 7th Int. Workshop on Advanced Motion Control, AMC, 02, Maribor, Slovenia, July 2002, pp.: 232-235.

DOI: 10.1109/amc.2002.1026922

Google Scholar

[12] J. Vittek, and S. J. Dodds, Forced dynamics control of electric drives, EDIS Publishing Centre of Zilina University, Slovakia, 2003, available at http: /www. kves. uniza. sk/ (e-learning).

Google Scholar

[13] S. J. Dodds, Settling time formulae for the design of control systems with linear closed loop dynamics, in Proc. of the International conference AC&T - Advances in Computing and Technology, University of East London, UK, (2007).

Google Scholar

[14] D. W. Novotny, T. A. Lipo, Vector control and dynamics of AC drives, Clarendon Press, (1996).

Google Scholar

[15] P. Brandstetter, T. Krecek, Speed and current control of permanent magnet synchronous motor using IMC controllers, Advances in Electrical and Computer Engineering, Vol. 12, Issue 4, 2012, pp.: 3-10.

DOI: 10.4316/aece.2012.04001

Google Scholar

[16] Y. Zhu, X. Zhu, T. Izumi, M. Kanesaka, Optimal velocity function minimizing dissipated energy considering all friction in a position control system, Journal of Robotics and Mechatronics, vol. 10, , Jan. 2007, pp.: 97-105.

DOI: 10.20965/jrm.2007.p0097

Google Scholar

[17] K. K. Shyu, Ch. K Lai, , Y. W Tsai, D. I. Yang, A newly robust controller design for the position control of permanent-magnet synchronous motor, IEEE Trans. on Industrial Electronics, vol. 49, No. 3, June 2002, pp.: 558-565.

DOI: 10.1109/tie.2002.1005380

Google Scholar

[18] Y. Wang, K. Ueda, S. A. Bortoff, A Hamiltonian approach to compute an energy efficient trajectory for a servomotor system, Automatica, Vol. 49, No. 12, Dec. 2013, pp.3550-3561.

DOI: 10.1016/j.automatica.2013.09.019

Google Scholar

[19] T. Duda, A. Vitecek, Robust control algorithms and the state variable aggregation method, Proc. 2013 14th International Carpathian Control Conference, ICCC 2013, Rytro; Poland; May 2013, pp.: 49-52.

DOI: 10.1109/carpathiancc.2013.6560509

Google Scholar

[20] K. Kyslan, F. Ďurovský, Dynamic emulation of mechanical loads - An approach based on industrial drives' features, Automatika, Vol. 54, No. 3, 2013, pp.: 356-363.

DOI: 10.7305/automatika.54-3.184

Google Scholar

[21] L. M. Grzesiak, T. Tarczewski, PMSM servo-drive control system with a state feedback and a load torque feedforward compensation, COMPEL, The Int. Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2013, Vol. 32, No. 1, pp.: 364-382.

DOI: 10.1108/03321641311293939

Google Scholar