Bootstrap Identification of Confidence Intervals for the Non-Linear DoE Model

Article Preview

Abstract:

Design of experiment (DoE) is a methodology widely used in an industry and an academia. However the fundamentals of DoE are well known since first articles of R.A. Fisher, the uncertainty estimation is still the investigated issue due to the fact that non-linear outcome functions do not preserve the normal distribution. The analytical solutions are known only for a very limited number of transformation. Authors propose to involve a bootstrap approach to estimate the outcome uncertainty of the response surface model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-16

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Kempthorne, K. Hinkelmann, Design and analysis of experiments. Vol. 1. Introduction to experimental design, John Wiley & Sons, Hoboken, NJ, USA (2007).

Google Scholar

[2] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, Inc., Hoboken (2008).

Google Scholar

[3] R.L. Mason, R.F. Gunst, J.L. Hess, Statistical Design and Analysis of Experiments, John Wiley & Sons, Hoboken (1989).

Google Scholar

[4] R.H. Myers, D.C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons (1995).

Google Scholar

[5] M.S. Phadke, Quality Engineering Using Robust Design, Prentice Hall International, Inc., London (1989).

Google Scholar

[6] K.R. Bhote, A.K. Bhote, World class quality: using design of experiments to make it happen, AMACOM, New York (2000).

DOI: 10.2307/1269965

Google Scholar

[7] J. Shao, D. Tu, The Jackknife and Bootstrap, Springer, New York (1995).

Google Scholar

[8] N. Radek, J. Pietraszek, B. Antoszewski, The Average Friction Coefficient of Laser Textured Surfaces of Silicon Carbide Identified by RSM Methodology, Adv Mater Res-Switz 874 (2014) 29-34.

DOI: 10.4028/www.scientific.net/amr.874.29

Google Scholar

[9] S.S. Stevens, On the theory of scales of measurements, 103 (1946) 677-680.

Google Scholar

[10] J. Pietraszek, A. Goroshko, The Heuristic Approach to the Selection of Experimental Design, Model and Valid Pre-Processing Transformation of DoE Outcome, Adv Mater Res-Switz 874 (2014) 145-149.

DOI: 10.4028/www.scientific.net/amr.874.145

Google Scholar

[11] N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, Vol. 1, John Wiley and Sons, Hoboken (1995).

Google Scholar

[12] G. Górny, M. Rączka, L. Stobierski, L. Wojnar, R. Pampuch, Microstructure-property relationship in B4C-beta SiC materials, Solid State Ionics 101 (1997) 953-958.

DOI: 10.1016/s0167-2738(97)00378-0

Google Scholar

[13] E. Skrzypczak-Pietraszek, J. Słota, J. Pietraszek, The influence of L-phenylalanine, methyl jasmonate and sucrose concentration on the accumulation of phenolic acids in Exacum affine Balf. f. ex Regel shoot culture, Acta Biochim Pol 61 (2014).

DOI: 10.18388/abp.2014_1922

Google Scholar

[14] A. Gądek-Moszczak, N. Radek, S. Wroński, J. Tarasiuk, Application the 3D Image Analysis Techniques for Assessment the Quality of Material Surface Layer Before and After Laser Treatment, Adv Mater Res-Switz 874 (2014) 133-138.

DOI: 10.4028/www.scientific.net/amr.874.133

Google Scholar

[15] A. Szczotok, On gamma-gamma' eutectic quantitative evaluation in the as-cast CMSX-4 nickel-based superalloy, Solid State Phenomen 197 (2013) 203-208.

DOI: 10.4028/www.scientific.net/ssp.197.203

Google Scholar

[16] V. Royzman, A. Goroshko, Multiple inverse problem, J Vibroeng 14 (2012) (3) 1417-1424.

Google Scholar

[17] A.V. Goroshko, V.P. Royzman, A. Bubulis, K. Juzenas, Methods for testing and optimizing composite ceramics-compound joints by solving inverse problems of mechanics, J Vibroeng 16 (2014) (5) 2178-2187.

Google Scholar

[18] J. Pietraszek, E. Skrzypczak-Pietraszek, The Optimization of the Technological Process with the Fuzzy Regression, Adv Mater Res-Switz 874 (2014) 151-155.

DOI: 10.4028/www.scientific.net/amr.874.151

Google Scholar

[19] J. Pietraszek, The Modified Sequential-Binary Approach for Fuzzy Operations on Correlated Assessments, Lect Notes Artif Int 7894 (2013) 353-364.

Google Scholar

[20] R. Dwornicka, The Impact of the Power Plant Unit Start-Up Scheme on the Pollution Load, Adv Mater Res-Switz 874 (2014) 63-69.

DOI: 10.4028/www.scientific.net/amr.874.63

Google Scholar

[21] P. Duda, R. Dwornicka, Optimization of heating and cooling operations of steam gate valve, Struct Multidiscip O 40 (2010) (1-6) 529-535.

DOI: 10.1007/s00158-009-0370-8

Google Scholar

[22] B. Węglowski, P. Osocha, Modelling of Creep for Y Pipe from Ferritic-Martensitic P91 Steel, Rynek Energii (2009) (6) 140-145.

Google Scholar

[23] P. Wawrzała, J. Korzekwa, Charge-Discharge Properties of PLZT x/90/10 Ceramics, Ferroelectrics 446 (2013) (1) 91-101.

DOI: 10.1080/10584587.2013.821016

Google Scholar

[24] J. Tarasiuk, P. Gerber, B. Bacroix, K. Piekos, Modeling of recrystallization using Monte Carlo method based on EBSD data, in: D.N. Lee, (Ed. ), Textures of Materials, Pts 1 and 2 (2002), 395-400.

DOI: 10.4028/www.scientific.net/msf.408-412.395

Google Scholar