[1]
Rossignac J R, Requicha a. a. g. Constantradius blending in solid modeling [J]. Comput. Mech at. Eng, 1984, (3) : 65-73 Hoffmann E.
Google Scholar
[2]
Hopcroft j. Quadratic blending surfaces [J]. Computer Aided Design, 1986, 18: 30 1-307.
Google Scholar
[3]
Warren j. Blending algebraic surfaces [J]. Journal of ACM Trans. On Graphics, 1989, 8 (4) : 263-278.
DOI: 10.1145/77269.77270
Google Scholar
[4]
Bloor M I G, Wilson, j. m. Generating blendingsurfaces using partial differential equation [J]. Computer Aided Design, 1989, 21 (3) : 165-171.
DOI: 10.1016/0010-4485(89)90071-7
Google Scholar
[5]
Bloor, M I G, Wilson, j. m. Using partial differentialequation - to generate free form surfaces [J]. Computer Aided Design, 1990, 22 (4) : 202-212.
DOI: 10.1016/0010-4485(90)90049-i
Google Scholar
[6]
Koparkar p. Parametric blending using the fanout surfaces [A]. In: Proc. ACM Symp. Solid Modeling Foundations CAD/CAM applications Austin [C]. TX, USA, 1991. 317-327.
DOI: 10.1145/112515.112557
Google Scholar
[7]
Bajaj C L, Ihm i. Algebraic surface design with Hermite interpolation [J]. Journal of ACM Trans. On Graphics, 1992, 11 (1) : 61-91 Classical Chinese mathematics.
DOI: 10.1145/102377.120081
Google Scholar
[8]
ding-kang wang. The algebraic surface fitting problem in CAGD [J]. The practice and understanding of mathematics, 1994, (3) : 26-31.
Google Scholar
[9]
Wallner J, Pottmann h. Rational blending surfaces between quadrics [J]. Journal of CAGD, 1997, 14: 407-419.
DOI: 10.1016/s0167-8396(96)00037-4
Google Scholar
[10]
han-dong zhu, framatome light. Excessive surface method to construct bus [J]. Journal of engineering graphics, 1998, 19 (3) : 45-48.
Google Scholar
[11]
Wu, T/R, Zhou Y S. O n blending of several quadratic algebraic surfaces [J]. Journal of CAGD, 2000, and 59-766 Cheng J S.
Google Scholar
[12]
the Blending quadric surfaces via a base curve method. In: Proceedings of ASCM03 [C]. World Scientific. 2003. 77-86.
Google Scholar
[13]
Hartmann e. Blending an implicit with a parametric surface [J]. Journal of CAGD, 1995, 12: 825-835.
Google Scholar
[14]
Hartmann e. Numerical implicitization for intersection computes and designed. the Gn - continuous blending of surface [J]. Journal of CAGD, 1998, 15: 377-397.
DOI: 10.1016/s0167-8396(97)00040-x
Google Scholar
[15]
Hartmann e. designed. the Gn - continuous connections between normal ringed surfaces [J]. Journal of CAGD, 2001, offences. 51-770.
DOI: 10.1016/s0167-8396(01)00065-6
Google Scholar
[16]
Chen F L, Chen S C, Deng j. s. Blending pipe surfaces with piecewise algebraic surfaces [J]. Chinese j. Computers, 2000, 23 (9) : 911-916.
Google Scholar
[17]
xue-feng liu. Torus structure pipe splicing surface method and its continuity [J]. Journal of China university of science and technology, 2004, 9. 34 (1) : 20 to 28.
Google Scholar
[18]
three processes, the high hill. Construct the joining together of two curved surface [J]. Journal of engineering graphics, 2005, 1: 39-44.
Google Scholar
[19]
pregnancy Cui Li WuTie as. Two axes on the surface of the different pipe splicing [J]. Journal of jilin university (science edition), 2002, 40 (2) : 138-140.
Google Scholar
[20]
Lei Na, Zhang Shugong, Dong Tian, Feng Guochen. The existence and expression of osculatory rational interpolation, Journal of Information and Computational Science, 2005, 2 (3) : 493-500.
Google Scholar
[21]
gen-zhu bai. Two axes of the cylinder is in different planes smooth stitching problem [D]. Jilin university, (2004).
Google Scholar
[22]
gen-zhu bai. Implicit algebraic surface splicing [J]. Journal of mathematics practice and understanding. 2006, 4 (4) : 274-277.
Google Scholar
[23]
rule. The parameter equations of the spatial circle and its application [J]. Journal of hunan normal university journal of natural science. 2012, 9. 35 (6) : 24-26.
Google Scholar
[24]
Han Wang Gen - zhu Bai. Employing Generalized Cylindrical Helicoid Tube to Smoothly Blending Tubes Whose Axes are Non - coplanar, Applied Mechanics and Materials, 2013380-384: 1750-1754.
DOI: 10.4028/www.scientific.net/amm.380-384.1750
Google Scholar