[1]
Bioucas-Dias J, Plaza A, Dobigeon N, et al. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches[J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2012, 5(3): 354-379.
DOI: 10.1109/jstars.2012.2194696
Google Scholar
[2]
Keshava N, Mustard J. Spectral unmixing[J]. IEEE Signal Process. Mag., 2002, 19(1): 44–57.
DOI: 10.1109/79.974727
Google Scholar
[3]
Plaza A, Du Q, Bioucas-Dias J, Jia X, et al. Foreword to the special issue on spectral unmixing of remotely sensed data [J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(11): 1–8.
DOI: 10.1109/tgrs.2011.2167193
Google Scholar
[4]
Heinz D, Chang C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J]. IEEE Trans. Geosci. Remote Sens., 2001, 39(3): 529–545.
DOI: 10.1109/36.911111
Google Scholar
[5]
Lee D D, Seung H S. Algorithms for non-negative matrix factorization [C]/ Advances in neural information processing systems. 2001, MA: MIT Press: Cambridge. pp.556-562.
Google Scholar
[6]
Hoyer P. Non-negative sparse coding[C]/ 12th IEEE Workshop NNSP, p.557–565, (2002).
Google Scholar
[7]
Pauca V, Piper J, Plemmons R. Nonnegative matrix factorization for spectral data analysis[J]. Linear Algebra Appl., 2006, 416(1): 29–47.
DOI: 10.1016/j.laa.2005.06.025
Google Scholar
[8]
Miao L, Qi H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization[J]. IEEE Trans. Geosci. Remote Sens., 2007, 45(3): 765–777.
DOI: 10.1109/tgrs.2006.888466
Google Scholar
[9]
Xu Z, Zhang H, Wang Y, Chang Y. L1/2 regularizer[J]. Sci. China. Ser. F, Inf. Sci., 2011, 53(6): 1159–1169.
Google Scholar
[10]
Qian Y. Jia S, Zhou J, et al. Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization [J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(11): 4282–4297.
DOI: 10.1109/tgrs.2011.2144605
Google Scholar
[11]
Jia S, Qian Y. Constrained nonnegative matrix factorization for hyperspectral unmixing [J]. IEEE Trans. Geosci. Remote Sens., 2009, 47(1): 161–173.
DOI: 10.1109/tgrs.2008.2002882
Google Scholar
[12]
Wang N, Du B. Zhang L. An Endmember Dissimilarity Constrained Non-Negative Matrix Factorization Method for Hyperspectral Unmixing [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 554-569.
DOI: 10.1109/jstars.2013.2242255
Google Scholar
[13]
Lu X, Wu H, Yuan Y, et al. Manifold Regularized Sparse NMF for Hyperspectral Unmixing [J]. IEEE Trans. Geosci. Remote Sens., 2013, 51(5): 2815-2826.
DOI: 10.1109/tgrs.2012.2213825
Google Scholar
[14]
Wang Y, Pan C, Xiang S, et al. Robust Hyperspectral Unmixing with Correntropy based Metric [J]. 2013, arXiv preprint, arXiv: 1305. 7311.
Google Scholar
[15]
Iordache D, Bioucas-Dias J, Plaza A. Sparse unmixing of hyperspectral data [J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(6): 2014–(2039).
DOI: 10.1109/tgrs.2010.2098413
Google Scholar
[16]
Bioucas-Dias J, Figueiredo M. Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing [C]/ 2nd Workshop on Hyperspectral Image and Signal IEEE Processing: Evolution in Remote Sensing (WHISPERS). (2010).
DOI: 10.1109/whispers.2010.5594963
Google Scholar
[17]
Fen C, Yan Z. Sparse Hyperspectral Unmixing Based on Constrained Lp-L2 Optimization [J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1142-1146.
DOI: 10.1109/lgrs.2012.2232901
Google Scholar
[18]
Sun L, Wu Z, Xiao L, et al., A novel l 1/2 sparse regression method for hyperspectral unmixing[J]. International Journal of Remote Sensing. 2013, 34(20): 6983-7001.
DOI: 10.1080/01431161.2013.804225
Google Scholar
[19]
Iordache M, Bioucas-Dias J, Plaza A. Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2012, 50(11) 4484-4502.
DOI: 10.1109/tgrs.2012.2191590
Google Scholar