A Review of the Hyperspectral Unmixing Methods that Based on Constrained NMF and Constrained Sparse Regression

Article Preview

Abstract:

Hyperspectral unmixing (HSU) plays an important role in hyperspectral image analysis, and most of the current HSU algorithms are base on linear mixing model (LMM). This paper gives a review of two linear HSU methods that have been drawn great attention recently: one is constrained nonnegative matrix factorization (CNMF) based method, the other is constrained sparse regression (CSR) based method. We carried on the systematic summary to these two types of methods, based on which, we point out some potential research topics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1540-1545

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bioucas-Dias J, Plaza A, Dobigeon N, et al. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches[J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2012, 5(3): 354-379.

DOI: 10.1109/jstars.2012.2194696

Google Scholar

[2] Keshava N, Mustard J. Spectral unmixing[J]. IEEE Signal Process. Mag., 2002, 19(1): 44–57.

DOI: 10.1109/79.974727

Google Scholar

[3] Plaza A, Du Q, Bioucas-Dias J, Jia X, et al. Foreword to the special issue on spectral unmixing of remotely sensed data [J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(11): 1–8.

DOI: 10.1109/tgrs.2011.2167193

Google Scholar

[4] Heinz D, Chang C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J]. IEEE Trans. Geosci. Remote Sens., 2001, 39(3): 529–545.

DOI: 10.1109/36.911111

Google Scholar

[5] Lee D D, Seung H S. Algorithms for non-negative matrix factorization [C]/ Advances in neural information processing systems. 2001, MA: MIT Press: Cambridge. pp.556-562.

Google Scholar

[6] Hoyer P. Non-negative sparse coding[C]/ 12th IEEE Workshop NNSP, p.557–565, (2002).

Google Scholar

[7] Pauca V, Piper J, Plemmons R. Nonnegative matrix factorization for spectral data analysis[J]. Linear Algebra Appl., 2006, 416(1): 29–47.

DOI: 10.1016/j.laa.2005.06.025

Google Scholar

[8] Miao L, Qi H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization[J]. IEEE Trans. Geosci. Remote Sens., 2007, 45(3): 765–777.

DOI: 10.1109/tgrs.2006.888466

Google Scholar

[9] Xu Z, Zhang H, Wang Y, Chang Y. L1/2 regularizer[J]. Sci. China. Ser. F, Inf. Sci., 2011, 53(6): 1159–1169.

Google Scholar

[10] Qian Y. Jia S, Zhou J, et al. Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization [J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(11): 4282–4297.

DOI: 10.1109/tgrs.2011.2144605

Google Scholar

[11] Jia S, Qian Y. Constrained nonnegative matrix factorization for hyperspectral unmixing [J]. IEEE Trans. Geosci. Remote Sens., 2009, 47(1): 161–173.

DOI: 10.1109/tgrs.2008.2002882

Google Scholar

[12] Wang N, Du B. Zhang L. An Endmember Dissimilarity Constrained Non-Negative Matrix Factorization Method for Hyperspectral Unmixing [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 554-569.

DOI: 10.1109/jstars.2013.2242255

Google Scholar

[13] Lu X, Wu H, Yuan Y, et al. Manifold Regularized Sparse NMF for Hyperspectral Unmixing [J]. IEEE Trans. Geosci. Remote Sens., 2013, 51(5): 2815-2826.

DOI: 10.1109/tgrs.2012.2213825

Google Scholar

[14] Wang Y, Pan C, Xiang S, et al. Robust Hyperspectral Unmixing with Correntropy based Metric [J]. 2013, arXiv preprint, arXiv: 1305. 7311.

Google Scholar

[15] Iordache D, Bioucas-Dias J, Plaza A. Sparse unmixing of hyperspectral data [J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(6): 2014–(2039).

DOI: 10.1109/tgrs.2010.2098413

Google Scholar

[16] Bioucas-Dias J, Figueiredo M. Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing [C]/ 2nd Workshop on Hyperspectral Image and Signal IEEE Processing: Evolution in Remote Sensing (WHISPERS). (2010).

DOI: 10.1109/whispers.2010.5594963

Google Scholar

[17] Fen C, Yan Z. Sparse Hyperspectral Unmixing Based on Constrained Lp-L2 Optimization [J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1142-1146.

DOI: 10.1109/lgrs.2012.2232901

Google Scholar

[18] Sun L, Wu Z, Xiao L, et al., A novel l 1/2 sparse regression method for hyperspectral unmixing[J]. International Journal of Remote Sensing. 2013, 34(20): 6983-7001.

DOI: 10.1080/01431161.2013.804225

Google Scholar

[19] Iordache M, Bioucas-Dias J, Plaza A. Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2012, 50(11) 4484-4502.

DOI: 10.1109/tgrs.2012.2191590

Google Scholar