[1]
D. Li, W. Ma, Asymptotic properties of a HIV-1 infection model with time delay, Journal of Mathematical Analysis and Applications. 335(2007) 683-691.
DOI: 10.1016/j.jmaa.2007.02.006
Google Scholar
[2]
P. K. Srivastava, P. Chandra, Modeling the dynamics of HIV and CD4+ T cells during primary infection, Nonlinear Analysis: Real World Applications. 11(2010) 612-618.
DOI: 10.1016/j.nonrwa.2008.10.037
Google Scholar
[3]
M. D. Mascio, R. Ribeiro, M. Markowitz, D. Ho, A. Perelson, Modelling the long term control of viraemia in HIV-1 infected patients treated with antiretroviral therapy, Mathematical Biosciences. 188(2004) 47-62.
DOI: 10.1016/j.mbs.2003.08.003
Google Scholar
[4]
M. Abell, J. Braselton, L. Braselton, The effects of immunity and resistance on the development of AIDS, Journal of Mathematical Analysis and Applications. 333(2007) 8-23.
DOI: 10.1016/j.jmaa.2006.12.021
Google Scholar
[5]
P. W. Nelson, A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Mathematical Biosciences. 179(2002) 73-94.
DOI: 10.1016/s0025-5564(02)00099-8
Google Scholar
[6]
M. Pitcha, C. Monica, M. Divya, Stability analysis for HIV infection delay model with protease inhibitor, Biosystems. 114(2013) 118-124.
DOI: 10.1016/j.biosystems.2013.08.003
Google Scholar
[7]
R. X, Global dynamics of an HIV-1 infection model with distributed intracellular delays, Computers and Mathematics with Applications. 61(2011) 2799-2805.
DOI: 10.1016/j.camwa.2011.03.050
Google Scholar
[8]
D. Q. Jiang, C. Y. Ji, N. Z. Shi, J. J. Yu, The long time behavior of DI SIR epidemic model with stochastic perturbation, Journal of Mathematical Analysis and Applications. 372(2010) 162-180.
DOI: 10.1016/j.jmaa.2010.06.003
Google Scholar
[9]
L. Wang, Global Mathematical Analysis of an HIV-1 Infection Model with Holling Type-II Incidence, Communications in Applied Analysis. 15(2011) 47-56.
Google Scholar
[10]
A. Bahar, X. Mao, Stochastic delay Lotka-Volterra model, Journal of Mathematical Analysis and Applications. 292(2004) 364-380.
DOI: 10.1016/j.jmaa.2003.12.004
Google Scholar
[11]
C. A. Braumann, Variable effort harvesting models in random environments: Generalisation to density-dependent noise intensities, Mathematical Biosciences. 177(2002) 229-245.
DOI: 10.1016/s0025-5564(01)00110-9
Google Scholar
[12]
T. C. Gard, Introduction to Stochastic Differential Equations, Marcel Dekker, New York, (1988).
Google Scholar
[13]
X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses Applications. 97(2002) 95-110.
DOI: 10.1016/s0304-4149(01)00126-0
Google Scholar
[14]
X. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, (1997).
Google Scholar