Investigation on the Electronic Structure and Optical Properties of ZnO Nanofilms

Article Preview

Abstract:

The electronic structure and optical properties of wurtzite ZnO nanofilms with different thickness are investigated systematically by using the first-principles approach. The results indicate that the valence band properties of the ZnO nanofilms are mainly determined by the Zn: 3d state and O: 2p state. And its conduction band properties are determined by Zn: 4s state and Zn: 4p state. The band gap decreases with the thickness of nanofilms increasing in [0001] direction. It is also found that the interband transition absorption edge of ZnO nanofilms decreasing from 5.5 eV to 2.7 eV with the thickness of nanofilms increasing from single layer to five layers. The interband transition of reflection spectrum occurs mainly in the range of 10 eV to 18 eV, which is in line with the ionic bonding characteristic of wurtzite ZnO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2731-2736

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bar, J. Reichardt and A. Grimm: J. Appl. Phys. 98 (2005), p.537022.

Google Scholar

[2] H.J. Kim, H.N. Lee, J.C. Park and W.G. Lee: Curr. Appl. Phys. 2(2002), p.451.

Google Scholar

[3] R.J. Hong, J.D. Shao, H.B. He and Z.X. Fan: Chin. Opt. Lett. 3(2005), p.428.

Google Scholar

[4] M. Ashokkumar, S. Muthukumaran: J. Magn. Magn. Mater. 374(2015), p.61.

Google Scholar

[5] X.Y. Kong, Y. Ding, R. Yang and Z.L. Wang: Science. 303(2004), p.1348.

Google Scholar

[6] X.H. Huang, G.H. Li, L. Duan, L. Li, X.C. Dou and L.D. Zhang: Scripta. Mater. 60(2009), p.984.

Google Scholar

[7] P.X. Gao, Z.L. Wang: Appl. Phys. Lett. 84(2004), p.2883.

Google Scholar

[8] C.E. Barrios, M.A. Baltanás, R. Bolmaro and A.L. Bonivardi: Powder. Technol. 267(2014), p.180.

Google Scholar

[9] Y.T. Chang, J.Y. Chen, T.P. Yang, C.W. Huang and C.H. Chiu: Nano. Energy. 8(2014), p.291.

Google Scholar

[10] N.A. Noor, S. Ali, G. Murtaza, M. Sajjad and S.M. Alay-e-Abbas: Comput. Mater. Sci. 93(2014), p.151.

Google Scholar

[11] R.M. Sheetz, I. Ponomareva, E. Richter, A.N. Andriotis and M. Menon: Phys. Rev. B. 80(2009), p.195314.

Google Scholar

[12] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson and M.R. Pederson: Phys. Rev. B. 46(1992), p.6671.

Google Scholar

[13] J.P. Perdew, K. Burke and M. Ernzerhof : Phys. Rev. Lett. 77(1996), p.3865.

Google Scholar

[14] B. Delley: J. Chem. Phys. 113(2000), p.7756.

Google Scholar

[15] B. Delley: J. Chem. Phys. 92(1990), p.508.

Google Scholar

[16] S. Desgreniers: Phys. Rev. B. 58(1998), p.14102.

Google Scholar

[17] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip and M.J. Probert: Z. Kristallogr. 220 (2005), p.399.

Google Scholar

[18] P. Erhart, K. Albe and A. Klein: Phys. Rev. B. 73(2006), p.205203.

Google Scholar

[19] E. Wimmer, H. Krakauer, M. Weinert and A.J. Freeman: Phys. Rev. B. 24(1981), p.864.

Google Scholar

[20] X.C. Sheng: The Spectrum and Optical Property of Semiconductor (Science Press, Beijing 1992 ).

Google Scholar