The Effects of the Post-Annealing Atmosphere on the Ultraviolet Responsivity of n-ZnO/p-Silicon Nanowire Heterojunction

Article Preview

Abstract:

UV photoresponse of n-ZnO/p-Silicon nanowire (SiNW) photodiodes is investigated by varying post-treatment conditions. Based on spectral responsivity measurement, the responsivity of our photodiodes decreases with increasing the post-annealing temperature in vacuum atmosphere, and the biggest responsivity reaches to as high as ~42 A/W under a reverse bias of 2V near 390 nm when the post-annealing temperature is at 100 °C. And the responsivity is higher when our devices are annealed in vacuum atmosphere than in oxygen atmosphere. We think that the higher responsitivity may be due to the smaller grain size and more oxygen-vacancy-related defects in ZnO film deposited at lower temperature. These results may benefit potential applications of n-ZnO/p-SiNW photodetectors in ultraviolet region.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-153

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Monroy, F. Omnes and F. Calle, Semicond. Sci. Tech. Vol. 18 (2003), p.33.

Google Scholar

[2] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, J. Cryst. Growth, Vol. 225 (2001), p.110.

Google Scholar

[3] I. S. Jeong, J. H. Kim and S. Im, Appl. Phys. Lett. Vol. 83 (2003), p.2946.

Google Scholar

[4] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner, J. Vac. Sci. Technol. Vol. 22 (2004), p.932.

Google Scholar

[5] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science, Vol. 291 (2001), p. (1947).

Google Scholar

[6] J. J. Wu, S. C. Liu, Adv. Mater. Vol. 14 (2002), p.215.

Google Scholar

[7] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, J. Cryst. Growth Vol. 225 (2001), p.110.

Google Scholar

[8] C. H. Seager and S. M. Myers, J. Appl. Phys. Vol. 94 (2003), p.2888.

Google Scholar

[9] T. Koida, S. F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa and H. Koinuma, Appl. Phys. Lett. Vol. 82 (2003), p.532.

DOI: 10.1063/1.1540220

Google Scholar

[10] H. Zhou, G. J. Fang, L. Y. Yuan, C. Wang, X. X. Yang, H. H. Huang, C. H. Zhou and X. Z. Zhao, Appl. Phys. Lett. Vol. 94 (2009), p.013503.

Google Scholar

[11] Y. Z. Cheng, G. J. Fang, C. Li, L. Y. Yuan, L. Ai, B. R. Chen, X. Z. Zhao, Z. Y. Chen, W. B. Bai and C. M. Zhan J. Appl. Phys., Vol. 102 (2007), p.083516.

Google Scholar

[12] B. D. Cullity, Elements of X-ray Diffraction (seconded. ) Addison Esley, Reading, MA, 1978, p.102.

Google Scholar

[13] C. Ang, Z. Yu and L. E. Cross, Phys. Rev. B, Vol. 62 (2006), p.228.

Google Scholar

[14] X. Z. Kong, C. X. Liu, W. Dong, X. D. Zhang, C. Tao, L. Shen, J. R. Zhou, Y. F. Fei, and S. P. Ruan, Appl. Phys. Lett. Vol. 94 (2009), p.123502.

Google Scholar