[1]
F.L. Robert, Mohammad L.N., and Wang L.B., History of hot mix asphalt mixture design in the United States, ASCE 150th anniversary civil engineers paper, journal of materials in civil engineering, 2002, 14(4): 279-293.
DOI: 10.1061/(asce)0899-1561(2002)14:4(279)
Google Scholar
[2]
P.A. Cundall, O.D. L Strack. (1979). A discrete numerical model for granular assemblies. Geotechnique 29 (1): 47-65.
DOI: 10.1680/geot.1979.29.1.47
Google Scholar
[3]
P.A. Cundall and roger d. Hart (1992). numerical modelling of discontinua. Engineering computations, vol. 9, 101-113.
DOI: 10.1108/eb023851
Google Scholar
[4]
Qingli Dai, 2011. Two- and three-dimensional micromechanical viscoelastic finite element modeling of stone-based materials with X-ray computed tomography images, Construction and Building Materials 25, 1102–1114.
DOI: 10.1016/j.conbuildmat.2010.06.066
Google Scholar
[5]
M.K. Darabi, R.K. Abu Al-Rub, E.A. Masad et al. A Modified Viscoplastic Model to Predict the Permanent Deformation of Asphaltic Materials under Cyclic-Compression Loading at High Temperatures, International Journal of Plasticity (2012).
DOI: 10.1016/j.ijplas.2012.03.001
Google Scholar
[6]
E. Masad, B. Muhunthan, N. Shashidhar, T. Harman (1998). Aggregate orientation and segregation in asphalt concrete. Geotechnical Special Publication, ASCE, GSP 85, 69–80.
Google Scholar
[7]
E. Masad, B. Muhunthan, N. Shashidhar, T. Harman (1999). Internal structure characterization of asphalt concrete using image analysis. ASCE Journal of Computing in Civil Engineering (Special Issue on Image Processing) 13 (2), 88–95.
DOI: 10.1061/(asce)0887-3801(1999)13:2(88)
Google Scholar
[8]
L. Tashman, E. Masad, B. Peterson, H. Saleh (2001). Internal structure analysis of asphalt mixes to improve the simulation of Superpave gyratory compaction to field conditions. Association of Asphalt Paving Technologists 70, 605–645.
Google Scholar
[9]
E. Masad, L. Tashman, D. Little, and H. Zbib (2005). Viscoplastic modeling of asphalt mixes with the effects of anisotropy, damage and aggregate characteristics. Mech. Mater. 37(12), 1242–1256.
DOI: 10.1016/j.mechmat.2005.06.003
Google Scholar
[10]
Laith Tashman (2005). Microstructural Viscoplastic Continuum Model for Asphalt Concrete, PHD thesis, Texas A&M University, USA.
Google Scholar
[11]
Masanobu Oda, Hideo Nakayam (1989). Yield function for soil with anisotropic fabric, Journal of Engineering. Mechanics 115(1), 89-104.
Google Scholar
[12]
Eyad Masad, Samer Dessouky, and Dallas Little (2007). Development of an Elastoviscoplastic Microstructural-Based Continuum Model to Predict Permanent Deformation in Hot Mix Asphalt. International Journal of Geomechanics 7(2), 119-130.
DOI: 10.1061/(asce)1532-3641(2007)7:2(119)
Google Scholar
[13]
S. Murakami (1983), Notation of Continuum Damage Mechanics and Its Application to Anisotropic Creep Damage Theory, J. Engng Mater. Technol. 105: 99−105.
DOI: 10.1115/1.3225633
Google Scholar
[14]
Taesun You, Rashid K. Abu Al-Rub, Masoud K. Darabi et al. (2012). Three-dimensional microstructural modeling of asphalt concrete using a unified viscoelastic-viscoplastic-viscodamage model. Construction and Building Materials 28, 531–548.
DOI: 10.1016/j.conbuildmat.2011.08.061
Google Scholar
[15]
L. Rothenburg, A. Bogobowicz, R. Haas, F. W. Jung, and G. Kennepohl (1992). Micromechanical modelling of asphalt concrete in connection with pavement rutting problems. Proc., 7th Int. Conf. on Asphalt Pavements, Nottingham, U.K., 230–245.
Google Scholar
[16]
K. G. Chang, and J. N. Meegoda (1997). Micromechanical simulation of hot mix asphalt. J. Eng. Mech. 123(5), 495–503.
DOI: 10.1061/(asce)0733-9399(1997)123:5(495)
Google Scholar
[17]
P. Ullidtz (2001). Distinct element method for study of failure in cohesive particulate media. Transportation Research Record. 1757, Transportation Research Board, National Research Council, Washington, D.C., 127–133.
DOI: 10.3141/1757-15
Google Scholar
[18]
W. G. Buttlar, and Z. You (2001). Discrete element modeling of asphalt concrete: Microfabric approach. Transportation Research Record. 1757, Transportation Research Board, National Research Council, Washington, D.C., 111–118.
DOI: 10.3141/1757-13
Google Scholar
[19]
W. G. Buttlar, M. P. Wagoner, Z. You, and S. T. Brovold. 2004. Simplifying the hollow cylinder tensile test procedure through volume-based strain. Asphalt Paving Technol. 73, 367–399.
Google Scholar
[20]
S. Kose, M. Guler, H. U. Bahia, and E. Masad (2000). Distribution of strains within hot-mix asphalt binders. Transportation Research Record. 1728, Transportation Research Board, National Research Council, Washington, D.C., 21–27.
DOI: 10.3141/1728-04
Google Scholar
[21]
E. Masad, L. Tashman, N. Somedavan et al. (2002). Micromechanics-based analysis of stiffness anisotropy in asphalt mixtures. J. Mater. Civ. Eng. 14(5), 374–383.
DOI: 10.1061/(asce)0899-1561(2002)14:5(374)
Google Scholar
[22]
A. T. Papagiannakis, A. Abbas, and E. Masad (2002).
Google Scholar
[23]
A. R. Abbas (2004). Simulation of the micromechanical behavior of asphalt mixtures using the discrete-element method. Ph.D. dissertation, Dept. of Civil and Environmental Engineering, Washington State Univ., Pullman, Wash.
Google Scholar
[24]
Yong-Rak Kim, A.M. Allen,D. H. Little (2005). Damage-Induced Modeling of Asphalt Mixtures through Computational Micromechanics and Cohesive Zone Fracture. J. Mater. Civ. Eng. 17, 477-484.
DOI: 10.1061/(asce)0899-1561(2005)17:5(477)
Google Scholar
[25]
Z. You, Q. Dai ( 2007). A review of advances in micromechanical modeling of aggregate– aggregate interaction in asphalt mixture. Can J Civil Eng 34, 1519.
DOI: 10.1139/l06-113
Google Scholar
[26]
Changhong Zhou, Yanqing Zhao, and Zheren Wang (2009). A Discontinuous Numerical Method for Asphalt Mixture, ICCTP: Critical Issues in Transportation Systems Planning, Development, and Management, 2450-2455.
Google Scholar
[27]
G. H. Shi (1991). Manifold method of material analysis. Transaction of the 9th Army Conference on Apllied Mathematics and Computing, Minneapolis, Minnesota, USA, 57-76.
Google Scholar
[28]
G. H. Shi (1997). Numerical Manifold Method. Proc. of the 2nd international conference on analysis of discontinuous deformation, Kyoto, Japan, 1-35.
Google Scholar
[29]
Chandra S. Desai, K. Pradhan Shashank, and Cohen David, Cyclic Testing and Constitutive Modeling of Saturated Sand–Concrete Interfaces Using the Disturbed State Concept, Int. J. Geomech. 2005. 5: 286-294.
DOI: 10.1061/(asce)1532-3641(2005)5:4(286)
Google Scholar
[30]
Chandrakant S. Desai (2007). Unified DSC Constitutive Model for Pavement Materials with Numerical Implementation. Int. J. Geomech. 7: 83-101.
DOI: 10.1061/(asce)1532-3641(2007)7:2(83)
Google Scholar
[31]
Chandrakant S. Desai (2010). Constitutive modeling and computer methods in geotechnical engineering, acta geotechnica slovenica, 1: 5-29.
Google Scholar