[1]
Trosstman E and Froelun B. Tap water as a hydraulic pressure medium [M] Marcel Dekker Inc. New York, (2001).
Google Scholar
[2]
Backe´, W. Water- or oil-hydraulics in the future [C]. In Proceedings of the 6th Scandinavian International Conference on Fluid power, Finland, 26–28 May 1999: 51–64.
Google Scholar
[3]
Li Z Y, Yu Z Y, He X F and Yang S D. The development and perspective of water hydraulics (Keynote lecture) [D]. In Proceeding of the 4th JHPS International Symposium on Fluid power, Tokyo, 15–17 1999: 335–342.
Google Scholar
[4]
Gary W K and Patrick S K C. Water hydraulics-theory and applications[C]. Workshop on Water Hydraulics, Agricultural Equipment Technology Conference, Louisville, USA, 2004: 1-33.
Google Scholar
[5]
Yang Y S, Semini C, Guglielmino E, Tsagarakis G N and Caldwell G D, Water vs. Oil Hydraulic Actuation for a Robot Leg[C]. The 2009 IEEE International Conference on Mechatronics and Automation, Changchun, China, 2009: 1941-(1946).
DOI: 10.1109/icma.2009.5246620
Google Scholar
[6]
Dubus G, David O and Measson Y. From oil to pure water hydraulics, making cleaner and safer force feedback high payload tele-manipulators [M/OL]. InTech: Robotics 2010-Current and Future Challenges, 2010[2012-09-18]. http: /www. intechopen. com/books/show/title.
DOI: 10.5772/7337
Google Scholar
[7]
Tang Q G, Chen J T and Liu L P. Tribological behaviors of carbon fiber reinforced PEEK sliding on silicon nitride lubricated with water [J]. Wear. 2010, 269(7-8): 541-546.
DOI: 10.1016/j.wear.2010.05.009
Google Scholar
[8]
Rokala M. Analysis of slipper structures in water hydraulic axial piston pumps [D]. Tampere: Tampere Univ. of Tech. (2012).
Google Scholar
[9]
Hernandez T and Hodgson E R. Water hydraulic polymer components under irradiation mechanical properties [J]. Fusion Engineering and Design. 2007, 82: 2035-(2039).
DOI: 10.1016/j.fusengdes.2007.04.038
Google Scholar
[10]
OKULARCZYK W. Experimental investigations of guide rings made of UHMWPE and PTFE composite in water hydraulic systems [J]. Archives of Civil and Mechanical Engineerin. 2004, 5(1): 167-175.
DOI: 10.1016/s1644-9665(12)60234-9
Google Scholar
[11]
Rydberg K E. New materials and component design-key factors for water hydraulic systems [C]. International Exposition for Power Transmission and Technical Conference and SAE International Off-Highway Congress in Conjunction with CONEXPO-CON/AGG. Las Vegas, Nevada, USA, 2004: 241-248.
Google Scholar
[12]
Feldmann D G. The use of ceramic materials for fluid power components [C]. 80th Anniversary of Lithuanian University of Agriculture. Kaunas, USA, 2004: 60-64.
Google Scholar
[13]
Nie S L, Huang G H, Li Y P, Yang Y S and Zhu Y Q. Research on low cavitation in water hydraulic two-stage throttle poppet valve [J], Journal of Process Mechanical Engineering, Proc IMechE, Part E, 2006, 220 (3): 167-179.
DOI: 10.1243/09544089jpme78
Google Scholar
[14]
Yang Y S, Semini C, Tsagarakis N G, Caldwell D G and Zhu Y Q. Water hydraulics- a novel design of spool-type valves for enhanced dynamic performance. Proceeding of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Xi'an, China, 2008: 1308-1314.
DOI: 10.1109/aim.2008.4601851
Google Scholar
[15]
Liu Y S, Yang Y S and Li Z Y. Research on the flow and cavitation characteristics of multi-stage throttle in water hydraulics [J]. Journal of Process Mechanical Engineering, ProC ImechE, 2006, 220(3): 167-179.
Google Scholar
[16]
Varjus S H, Riipinen H, Sioni S M, Koskinen K T, Vilenius M J and Puhkka J A. Microbial growth control in water hydraulic systems by conventional filtration [J]. Filtration & Separation. 2004, 41(3): 41-47.
DOI: 10.1016/s0015-1882(04)00153-3
Google Scholar
[17]
Soini S M, Koskinen K T, Vilenius M J and Puhakka J A. Effects of high and fluctuating pressure on microbial abundance and activity in a water hydraulic system [J]. Applied Microbiology and Biotechnology. 2002, 58(5): 669-674.
DOI: 10.1007/s00253-001-0929-9
Google Scholar
[18]
Soini S M, Koskinen K T, Vilenius M J and Puhakka J A. Potential of microbial growth control in water hydraulic systems by UV-irradiation and filtration [J]. Journal of Chemical Technology and Biotechnology. 2002, 77(8): 903-909.
DOI: 10.1002/jctb.656
Google Scholar
[19]
Danfoss. High pressure systems[EB/OL]. 2010[2012-09-18].
Google Scholar
[20]
http: /www. danfoss. com/BusinessAreas / High-Pressure+ Systems.
Google Scholar
[21]
The Water Hydraulics Co. Ltd. Water products[EB/OL]. 2009[2012-09-18].
Google Scholar
[22]
http: /www. waterhydraulics. co. uk/new2/ water. php.
Google Scholar
[23]
Zhou H, Zhang Z M, Gao Y A and Yang H Y. Water-assisted injection molding system based on water hydraulic proportional control technique[J]. Chinese Journal of Mechanical Engineering. 2010, 23(4): 418-427.
DOI: 10.3901/cjme.2010.04.418
Google Scholar
[24]
Watanabe T, Inayama T and Oomichi T. Development of the small flow rate water hydraulic servo valve [J]. Journal of Robotics and Mechatronics. 2010, 22(3): 333-340.
DOI: 10.20965/jrm.2010.p0333
Google Scholar
[25]
Nie S L, Kong X C, Jia G T. Orthogonal Design and Analyses of Hydraulic Bridge for Water Servo valve [J]. Chinese Journal of Mechanical Engineering, 2009, 45(6): 67-72. (in Chinese).
DOI: 10.3901/jme.2009.06.067
Google Scholar
[26]
Wang X H, Zheng J, Li W and Sun S W. Design and analysis of slide valve used in water hydraulic servo valve based on fluid field simulation [J]. Applied mechanics and materials, 2010, 34-35: 1279-1283.
DOI: 10.4028/www.scientific.net/amm.34-35.1279
Google Scholar
[27]
Yang Y S, Guglielmino E, Dai J S, Boaventura T and Caldwell G D, Modeling of a novel 3-Way rotary type electro-hydraulic valve[C], IEEE International Conference on Information and Automation. Harbin, China, 2010: 1463-1468.
DOI: 10.1109/icinfa.2010.5512286
Google Scholar