Deriving an Economic Model for the Production of New Materials

Article Preview

Abstract:

This paper introduces a comprehensive economic model, developed for the assessment of nanomaterials production and application under the international SHYMAN project. Its major challenges include uncertainties relating to estimates of future demand for particular materials and final products, as well as accession of new commercial applications and reactions of competitors. These are being addressed by the innovative combined use of life cycle costing and real option appraisal within the framework of a statistical simulation model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http: /cordis. europa. eu/projects/rcn/103330_en. html and http: /www. shyman. eu.

Google Scholar

[2] F. Mato, J.B. Sierra, E. Alonso, M.J. Cocero and A. Navarrete, Hydrothermal manufacturing of nanomaterials: reactor computational fluid dynamic modeling, in: Proceedings of III. Iberoamerican Conference on Supercritical Fluids, Cartagena de Indias, (2013).

Google Scholar

[3] B. Stieberová, M. Žilka, M. Tichá, F. Freiberg and J. Hošek: submitted to NANOCON, Brno, (2014).

Google Scholar

[4] C.A. Charitidis, P. Georgiou, M.A. Koklioti, A. Trompeta and V. Markakis, Manufacturing nanomaterials: from research to industry, Manufacturing Review 11 (2014).

DOI: 10.1051/mfreview/2014009

Google Scholar

[5] M.A. Curran (Ed. ), Life Cycle Assessment Handbook, John Wiley, Hoboken, (2012).

Google Scholar

[6] G.A. Norris, Integrating life cycle cost analysis and LCA, International Journal of Life Cycle Assessment, 6 (2001) 118-120.

DOI: 10.1007/bf02977849

Google Scholar

[7] C. Drury, Management and Cost Accounting, Cengage, Boston, (2007).

Google Scholar

[8] B.S. Dhillon, Life Cycle Costing for Engineers, CRC Press, Boca Raton, (2010).

Google Scholar

[9] B. Carlsson, D. Taylor and W. Hogland, Design of Functional Units for Products by a Total Cost Accounting Approach, University of Kalmar, (2007).

Google Scholar

[10] F. Freiberg and J. Vlachý: submitted to Manažment podnikov (2014).

Google Scholar

[11] J. Vlachý, A chemical engineering case of life cycle costing, in: Economics and Business Management in the 21st Century, VŠB-TU, Ostrava, 2014, pp.283-292.

Google Scholar

[12] N.A.J. Hastings, Physical Asset Management, Springer, London, (2010).

Google Scholar

[13] Information on http.: /www. nanotechproject. com.

Google Scholar

[14] C. Fuss and P. Vermeulen, Firms' investment decisions in response to demand and price uncertainty, Applied Economics 40 (2008) 2337-2351.

DOI: 10.1080/00036840600959909

Google Scholar

[15] J. Mun, Modeling Risk, John Wiley, Hoboken, (2006).

Google Scholar

[16] E.S. Schwartz and L. Trigeorgis (Eds. ), Real Options and Investment under Uncertainty, MIT, Cambridge, (2001).

Google Scholar

[17] N. Kulatilaka and E. Perotti, Strategic growth options, Management Science, 44 (1998), 1021-1031.

DOI: 10.1287/mnsc.44.8.1021

Google Scholar

[18] P.P. Boyle, M. Broadie and P. Glasserman, Monte Carlo methods for security pricing, Journal of Economic Dynamics and Control, 21 (1997) 1276-1321.

DOI: 10.1016/s0165-1889(97)00028-6

Google Scholar

[19] N.N. Taleb and R. Douady, Mathematical definition, mapping and detection of (anti)fragility, Quantitative Finance 13 (2013) 1677-1689.

DOI: 10.1080/14697688.2013.800219

Google Scholar