Anti-Synchronization Control of the Complex Lu System

Article Preview

Abstract:

This paper propose fractional-order Lu complex system. Moreover, projective synchronization control of the fractional-order hyper-chaotic complex Lu system is studied based on feedback technique and the stability theorem of fractional-order systems, the scheme of anti-synchronization for the fractional-order hyper-chaotic complex Lu system is presented. Numerical simulations on examples are presented to show the effectiveness of the proposed control strategy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

269-272

Citation:

Online since:

December 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Blasius, A. Huppert, L. Stone, Complex dynamics and phase synchronization in spatially extended ecological systems. Nature, Vol. 399 (1999), No. 2, pp.354-359.

DOI: 10.1038/20676

Google Scholar

[2] C. D. Li, X. F. Liao, Lag synchronization of Rossler system and Chua circuit via a scalar signal. Phys. Rev. A, Vol. 32992004), no. 3, pp.301-308.

DOI: 10.1016/j.physleta.2004.06.077

Google Scholar

[3] S.H. Chen, J.H. Lu, Parameters identication and synchronization of chaotic systems based upon adaptive control. Physics Letters A, Vol. 299 (2002), No. 2, pp.296-303.

Google Scholar

[4] K. Diethelm, N.J. Ford, A.D. Freed. A predictor- corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. Vol. (29), No. 29, pp.3-22.

Google Scholar

[5] J.W. Feng, S.H. Chen. Controlling chen hyper-chaotic system. International of Journal Nonlinear Science Numerical Simulations, Vol. 7(2006), No. 2, pp.369-374.

Google Scholar

[6] G.H. Li. Modified projective synchronization of chaotic system. Chaos Solutions Fractals, Vol. 32 (2007), No. 2, pp.343-349.

Google Scholar

[7] X.Y. Wang, X.P. Zhang, Modified projective synchronization of fractional-order chaotic systems via active sliding mode control, Nonlinear Dyn, Vol. 69 (2012), pp.511-517.

DOI: 10.1007/s11071-011-0282-1

Google Scholar

[8] R. Mainieri, J. Rehacek, Projective synchronization in three-dimensional chaotic systems, Physic Review Letter, Vol. 82(1999) No. 2, pp.3042-3045.

DOI: 10.1103/physrevlett.82.3042

Google Scholar