Microsture and Properties of a Cu-Cr-Zr-Fe-Ti Alloy

Article Preview

Abstract:

The effect of 0.45 wt. % Fe and 0.2 wt. % Ti additions on the age hardening behavior of Cu-Cr-Zr-Zn alloys has been investigated with respect to hardness, electrical conductivity and microstructure. It was showed that the addition of Fe /Ti to Cu-Cr-Zr-Zn alloys enhance strength and hardness, but decrease the electrical conductivity, and increase the aging temperature and time for attaining peak hardness. The scanning electron microscope (SEM) and transmission electron microscopy (TEM) results showed that there are four types of phases in the alloy, Cu-matrix, Cr-rich, (Cu,Zr)-rich and (Fe,Ti)-rich phases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

556-560

Citation:

Online since:

January 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ASM, Metals Hand Book, Volume 2, Tenth edition, 1990, p.216.

Google Scholar

[2] Tomioka, Y.; Miyake, J., Proceedings of Electronic Components and Technology Conference, 1999, pp.714-720.

Google Scholar

[3] Tomioka Y.; Miyake J., Proceedings of Japan International Electronic Manufacturing Technology Symposium, 1995, pp.433-436.

Google Scholar

[4] M.A. Morris, J.C. Joye, Acta Met. Mater. 43 (1995) 43.

Google Scholar

[5] B.N. Singh, D.J. Edwards, M. Eldrup, P. Toft, J. Nucl. Mater. 249(1997) 1-16.

Google Scholar

[6] M. Eldrup, B.N. Singh,J. Nucl. Mater. 258-263 (1998) 1022-1027.

Google Scholar

[7] U. Holzwarth, M. Pisoni, R. Scholz, H. Stamm, A. Volcan, J. Nucl. Mater. 279 (2000) 19-30.

Google Scholar

[8] M. Li, J.K. Heuer, J.F. Stubbins, D.J. Edwards, J. Nucl. Mater. 283-287(2000) 977-981.

Google Scholar

[9] I.S. Batra, G.K. Dey, U.D. Kulkarni, S. Banerjee, J. Nucl. Mater. 299(2001) 91-100.

Google Scholar

[10] M. Merola, A. Orsini, E. Visca, etc. , Journal of Nuclear Materials, 307( 2002) 677-680.

Google Scholar

[11] I. S. Batra, G. K. Dey, U. D. Kulkarni and S. Banerjee, Materials Science and Engineering A, 356(2003)32-36.

Google Scholar

[12] Huang FX, Ma JSNing HL etc., Scripta Materialia, 48( 2003) 97-102.

Google Scholar

[13] W. X. Qi, J. P. Tu, F. Liu, Y. Z. Yang, N. Y. Wang, , Materials Science and Engineering A, 343( 2003)89-96.

Google Scholar

[14] K. Kapoor, D. Lahiri, I.S. Batra, S.V.R. Rao and T. Sanyal, 54(2005) 131-140.

Google Scholar

[15] Mahulikar D., Proceedings of 3rd International Symposium on Advanced Packaging Materials, 1997, p.94 –97.

Google Scholar

[16] Ghosh, G. Miyake, J.; Fine, M.E., JOM. 49(1997) 56-60.

Google Scholar

[17] Zhicheng L., Jianfeng X., Zhongping Z., Production and application of new nonferrous metal. Jiangshu Science and Technology Press, 1991, p.119.

Google Scholar

[18] Tomioka Y.; Miyake J., Proceedings of Japan International Electronic Manufacturing Technology Symposium, 1995, pp.433-436.

Google Scholar

[19] Tomioka, Y.; Miyake, J., Proceedings of Electronic Components and Technology Conference, 1999, pp.714-720.

Google Scholar

[20] J.W. Martin, Micromechanisms in particle hardened alloys, Cambridge University Press, Cambridge, 1980, p.62.

Google Scholar