Time Resolved Emission from Shocked Sapphire at 1.3 Mega-Bar

Article Preview

Abstract:

A pyrometer experiment was performed using the dynamic high pressure method; it shows that obvious emission phenomenon had been generated in the shocked sapphire windows. Shock stress in the sapphire was 1.3 Mega-bar. Recorded emission signal with nanosecond resolution at 850nm wavelength reveals nonlinear increase character. A time resolved absorption coefficient α (t) was taken to fit the radiance curve. The value of α (t) indicates that shock induced shear banding could be regarded as the emission source, seems increasing after the shockwave arriving in the sapphire windows.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

769-773

Citation:

Online since:

January 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.C. Holmes,M. Ross W.J. Nellis, Phys. Rev.B. 52 (1995) 15835.

Google Scholar

[2] D.E. Hare N.C. Holms, D.J. Webb , Phys. Rev.B. 66 (2002) 014108.

Google Scholar

[3] P.A. Urtiew, J. Appl. Phys. 45 (1974) 3490-3493.

Google Scholar

[4] R.G. McQueen D.G. Isaak, J. Geophy. Res. 95 (1990) 21753-21765.

Google Scholar

[5] K. Kondo, Window problem and complementary method for shock-temperature measurements of iron , in : S. C. Schmidt, J. W. Shaner, G. A. Samara, and M. Ross (Eds. ), High Pressure Science and Technology, AIP Conf. Proc., New York, 1999, pp.31-34.

Google Scholar

[6] D.E. Hare D.J. Webb S.H. Lee, N.C. Holmes, Optical Extinction of Sapphire Shock-Loaded to 250-260 GPA, in : M.D. Furnish, N.N. Thadhani, and Y. Horie (Eds. ), Shock Compression of Condensed Matter, AIP Conf. Proc., New York, 2002, pp.1231-1234.

DOI: 10.1063/1.1483761

Google Scholar

[7] D.P. Sebban, J.L. Pelissier, W.W. Anderson, R.S. Hixson, D. B. Holtkamp, Characterization of Sapphire for Optical Pyrometry in Shock Experiments, in: M. D. Furnish, Y. M. Gupta, and J. W. Forbes (Eds. ), Shock Compression of Condensed Matter , AIP Conf. Proc., New York, 2004, pp.1289-1292.

DOI: 10.1063/1.1780474

Google Scholar

[8] O. V. Fat'yanov, R. L. Webb, Y. M. Gupta, J. Appl. Phys. 97(2005) 123529.

Google Scholar

[9] B.H. Billings, American Institute of Physics Handbook, 1st ed., McGraw Hill, New York, (1972).

Google Scholar

[10] C.F. Bohren , D.R. Huffman, Absorption and Scattering of Light by Small Particles, 2nd ed., John Wiley & Sons, New York, (1998).

Google Scholar

[11] G Y Hao, F S Liu, D Y Zhang, M J Zhang, Appl. Phys. Lett. 90 (2007)261914.

Google Scholar

[12] D Y Zhang, F S Liu, G Y Hao, Y H Sun, Chin. Phys. Lett. 24(8) (2007)2341.

Google Scholar

[13] M B Boslough, J. Appl. Phys. 58(1985) 3394.

Google Scholar

[14] E Tochigi, Y Kezuka, N Shibata, A Nakamura, Y Ikuhara, Acta Mater. 60 (2012)1293-1299.

Google Scholar

[15] J D Clayton, Proc. R. Soc. A. 465 (2009) 307-334.

Google Scholar

[16] S B Yiadom, A K Khan, N Bassim, Sci. Eng. A. 615( 2014)373-394.

Google Scholar

[17] M T Hanaoka, Y N Kunihito, J. Appl. Phys. 63(1988) 327-336.

Google Scholar

[18] Kucherov Y, Hubler G, Michopoulos J, J. Appl. Phys. 111(2012)023514.

Google Scholar