An Experimental Research on Generalized Prandtl-Ishlinskii Model for Modeling Asymmetric Hysteresis of a Piezoceramic Actuator

Article Preview

Abstract:

A piezoceramic actuator is widely employed in micropositioning and MEMS. However, the piezoceramic actuators are limited due to the natural hysteresis nonlinearity which affect the accuracy of the actuators in applications. In order to revise the hysteresis nonlinearity, lots of hysteresis models have been proposed such as the Preisach model, the classical Prandtl—Ishlinskii model and so on. While some drawbacks still exist with these models, a generalized hysteresis model for asymmetric hysteresis basing on the classical Prandtl—Ishlinskii model is devised. In the modified model, the exponential functions which contain the amplitude and the frequency of the input voltage and its gain factor are introduced into the NLPO (nonlinearity play operator). As a result, the generalized model in this paper applies to modeling asymmetric hysteresis. This model was identified and simulated using the experimental data by other researchers. At last, the validity and the accuracy of the given model were tested through the experiment of the piezoceramic control.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

793-798

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Truong BNM, Nam DNC, Ahn KK. Hysteresis modeling and identification of a dielectric electro-active polymer actuator using an apso-based nonlinear preisach narx fuzzy model [J]. Smart Materials and Structures, 2013, 22(9).

DOI: 10.1088/0964-1726/22/9/095004

Google Scholar

[2] Sayyaadi H, Zakerzadeh MR. Position control of shape memory alloy actuator based on the generalized prandtl-ishlinskii inverse model [J]. Mechatronics, 2012, 22(7): 945-957.

DOI: 10.1016/j.mechatronics.2012.06.003

Google Scholar

[3] Liu XD, Wang Y, Geng J, et al. Modeling of hysteresis in piezoelectric actuator based on adaptive filter [J]. Sensors and Actuators a-Physical, 2013, 189: 420-428.

DOI: 10.1016/j.sna.2012.09.013

Google Scholar

[4] Choi SB, Seong MS, Ha SH. Accurate position control of a flexible arm using a piezoactuator associated with a hysteresis compensator [J]. Smart Materials and Structures, 2013, 22(4).

DOI: 10.1088/0964-1726/22/4/045009

Google Scholar

[5] Xie WF, Fu J, Yao H, et al. Neural network-based adaptive control of piezoelectric actuators with unknown hysteresis [J]. International Journal of Adaptive Control and Signal Processing, 2009, 23(1): 30-54.

DOI: 10.1002/acs.1042

Google Scholar

[6] Wang ZY, Zhang Z, Mao JQ. Precision tracking control of piezoelectric actuator based on bouc-wen hysteresis compensator [J]. Electronics Letters, 2012, 48(23): 1459-1460.

DOI: 10.1049/el.2012.2940

Google Scholar

[7] Guo WP, Liu DT, Wang W. Neural network hysteresis modeling with an improved preisach model for piezoelectric actuators [J]. Engineering Computations, 2012, 29(3-4): 248-259.

DOI: 10.1108/02644401211212389

Google Scholar

[8] Song G, Zhao JQ, Zhou XQ, et al. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse preisach model [J]. Ieee-Asme Transactions on Mechatronics, 2005, 10(2): 198-209.

DOI: 10.1109/tmech.2005.844708

Google Scholar

[9] Khan MM, Lagoudas DC. Modeling of shape memory alloy pseudoelastic spring elements using preisach model for passive vibration isolation [M]. Smart structures and materials 2002: Modeling, signal processing, and control. 2002: 336-347.

DOI: 10.1117/12.475230

Google Scholar

[10] Janocha H, Pesotski D, Kuhnen K. Fpga-based compensator of hysteretic actuator nonlinearities for highly dynamic applications [J]. Ieee-Asme Transactions on Mechatronics, 2008, 13(1): 112-116.

DOI: 10.1109/tmech.2007.915065

Google Scholar

[11] Aljanaideh O, Al Janaideh M, Rakheja S, et al. Compensation of rate-dependent hysteresis nonlinearities in a magnetostrictive actuator using an inverse prandtl-ishlinskii model [J]. Smart Materials and Structures, 2013, 22(2).

DOI: 10.1088/0964-1726/22/2/025027

Google Scholar

[12] Al Janaideh M, Rakheja S, Su CY. An analytical generalized prandtl-ishlinskii model inversion for hysteresis compensation in micropositioning control [J]. Ieee-Asme Transactions on Mechatronics, 2011, 16(4): 734-744.

DOI: 10.1109/tmech.2010.2052366

Google Scholar

[13] Al Janaideh M, Rakheja S, Su CY. A generalized prandtl-ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators [J]. Smart Materials & Structures, 2009, 18(4).

DOI: 10.1088/0964-1726/18/4/045001

Google Scholar

[14] Dong RL, Tan YH. A modified prandtl-ishlinskii modeling method for hysteresis [J]. Physica B-Condensed Matter, 2009, 404(8-11): 1336-1342.

DOI: 10.1016/j.physb.2008.12.024

Google Scholar

[15] Jiang H, Ji HL, Qiu JH, et al. A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators [J]. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2010, 57(5): 1200-1210.

DOI: 10.1109/tuffc.2010.1533

Google Scholar

[16] Al Janaideh M, Su CY, Rakheja S. Development of the rate-dependent prandtl-ishlinskii model for smart actuators [J]. Smart Materials & Structures, 2008, 17(3).

DOI: 10.1088/0964-1726/17/3/035026

Google Scholar

[17] Ang WT, Garmon FA, Khosla PK, et al. Modeling rate-dependent hysteresis in piezoelectric actuators [M]. (2003).

Google Scholar

[18] Tan UX, Latt WT, Shee CY, et al. Feedforward controller of ill-conditioned hysteresis using singularity-free prandtl-ishlinskii model [J]. Ieee-Asme Transactions on Mechatronics, 2009, 14(5): 598-605.

DOI: 10.1109/tmech.2008.2009936

Google Scholar

[19] Al Janaideh M, Krejci P. Inverse rate-dependent prandtl-ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator [J]. Ieee-Asme Transactions on Mechatronics, 2013, 18(5): 1498-1507.

DOI: 10.1109/tmech.2012.2205265

Google Scholar

[20] Qin YD, Tian YL, Zhang DW, et al. A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications [J]. Ieee-Asme Transactions on Mechatronics, 2013, 18(3): 981-989.

DOI: 10.1109/tmech.2012.2194301

Google Scholar

[21] Zhang YL, Han ML, Yu MY, et al. Automatic hysteresis modeling of piezoelectric micromanipulator in vision-guided micromanipulation systems [J]. Ieee-Asme Transactions on Mechatronics, 2012, 17(3): 547-553.

DOI: 10.1109/tmech.2011.2106136

Google Scholar