[1]
Truong BNM, Nam DNC, Ahn KK. Hysteresis modeling and identification of a dielectric electro-active polymer actuator using an apso-based nonlinear preisach narx fuzzy model [J]. Smart Materials and Structures, 2013, 22(9).
DOI: 10.1088/0964-1726/22/9/095004
Google Scholar
[2]
Sayyaadi H, Zakerzadeh MR. Position control of shape memory alloy actuator based on the generalized prandtl-ishlinskii inverse model [J]. Mechatronics, 2012, 22(7): 945-957.
DOI: 10.1016/j.mechatronics.2012.06.003
Google Scholar
[3]
Liu XD, Wang Y, Geng J, et al. Modeling of hysteresis in piezoelectric actuator based on adaptive filter [J]. Sensors and Actuators a-Physical, 2013, 189: 420-428.
DOI: 10.1016/j.sna.2012.09.013
Google Scholar
[4]
Choi SB, Seong MS, Ha SH. Accurate position control of a flexible arm using a piezoactuator associated with a hysteresis compensator [J]. Smart Materials and Structures, 2013, 22(4).
DOI: 10.1088/0964-1726/22/4/045009
Google Scholar
[5]
Xie WF, Fu J, Yao H, et al. Neural network-based adaptive control of piezoelectric actuators with unknown hysteresis [J]. International Journal of Adaptive Control and Signal Processing, 2009, 23(1): 30-54.
DOI: 10.1002/acs.1042
Google Scholar
[6]
Wang ZY, Zhang Z, Mao JQ. Precision tracking control of piezoelectric actuator based on bouc-wen hysteresis compensator [J]. Electronics Letters, 2012, 48(23): 1459-1460.
DOI: 10.1049/el.2012.2940
Google Scholar
[7]
Guo WP, Liu DT, Wang W. Neural network hysteresis modeling with an improved preisach model for piezoelectric actuators [J]. Engineering Computations, 2012, 29(3-4): 248-259.
DOI: 10.1108/02644401211212389
Google Scholar
[8]
Song G, Zhao JQ, Zhou XQ, et al. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse preisach model [J]. Ieee-Asme Transactions on Mechatronics, 2005, 10(2): 198-209.
DOI: 10.1109/tmech.2005.844708
Google Scholar
[9]
Khan MM, Lagoudas DC. Modeling of shape memory alloy pseudoelastic spring elements using preisach model for passive vibration isolation [M]. Smart structures and materials 2002: Modeling, signal processing, and control. 2002: 336-347.
DOI: 10.1117/12.475230
Google Scholar
[10]
Janocha H, Pesotski D, Kuhnen K. Fpga-based compensator of hysteretic actuator nonlinearities for highly dynamic applications [J]. Ieee-Asme Transactions on Mechatronics, 2008, 13(1): 112-116.
DOI: 10.1109/tmech.2007.915065
Google Scholar
[11]
Aljanaideh O, Al Janaideh M, Rakheja S, et al. Compensation of rate-dependent hysteresis nonlinearities in a magnetostrictive actuator using an inverse prandtl-ishlinskii model [J]. Smart Materials and Structures, 2013, 22(2).
DOI: 10.1088/0964-1726/22/2/025027
Google Scholar
[12]
Al Janaideh M, Rakheja S, Su CY. An analytical generalized prandtl-ishlinskii model inversion for hysteresis compensation in micropositioning control [J]. Ieee-Asme Transactions on Mechatronics, 2011, 16(4): 734-744.
DOI: 10.1109/tmech.2010.2052366
Google Scholar
[13]
Al Janaideh M, Rakheja S, Su CY. A generalized prandtl-ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators [J]. Smart Materials & Structures, 2009, 18(4).
DOI: 10.1088/0964-1726/18/4/045001
Google Scholar
[14]
Dong RL, Tan YH. A modified prandtl-ishlinskii modeling method for hysteresis [J]. Physica B-Condensed Matter, 2009, 404(8-11): 1336-1342.
DOI: 10.1016/j.physb.2008.12.024
Google Scholar
[15]
Jiang H, Ji HL, Qiu JH, et al. A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators [J]. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2010, 57(5): 1200-1210.
DOI: 10.1109/tuffc.2010.1533
Google Scholar
[16]
Al Janaideh M, Su CY, Rakheja S. Development of the rate-dependent prandtl-ishlinskii model for smart actuators [J]. Smart Materials & Structures, 2008, 17(3).
DOI: 10.1088/0964-1726/17/3/035026
Google Scholar
[17]
Ang WT, Garmon FA, Khosla PK, et al. Modeling rate-dependent hysteresis in piezoelectric actuators [M]. (2003).
Google Scholar
[18]
Tan UX, Latt WT, Shee CY, et al. Feedforward controller of ill-conditioned hysteresis using singularity-free prandtl-ishlinskii model [J]. Ieee-Asme Transactions on Mechatronics, 2009, 14(5): 598-605.
DOI: 10.1109/tmech.2008.2009936
Google Scholar
[19]
Al Janaideh M, Krejci P. Inverse rate-dependent prandtl-ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator [J]. Ieee-Asme Transactions on Mechatronics, 2013, 18(5): 1498-1507.
DOI: 10.1109/tmech.2012.2205265
Google Scholar
[20]
Qin YD, Tian YL, Zhang DW, et al. A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications [J]. Ieee-Asme Transactions on Mechatronics, 2013, 18(3): 981-989.
DOI: 10.1109/tmech.2012.2194301
Google Scholar
[21]
Zhang YL, Han ML, Yu MY, et al. Automatic hysteresis modeling of piezoelectric micromanipulator in vision-guided micromanipulation systems [J]. Ieee-Asme Transactions on Mechatronics, 2012, 17(3): 547-553.
DOI: 10.1109/tmech.2011.2106136
Google Scholar