Calculation of Wavelengths, Transition Probabilities and Oscillator Strengths for E1 and M1 Transitions in Cu-Like Au Ion

Article Preview

Abstract:

Wavelengths, transition probabilities and oscillator strengths have been calculated for electric dipole (E1) transitions and magnetic dipole (M1) transitions in Cu-like Au ion. These values are obtained in the configuration interaction (CI) and using the fully relativistic multiconfiguration Dirac-Fock (MCDF) method including quantum electrodynamical (QED) effect and Breit correction. Obtained energy levels of some excited states in Cu-like Au ion from the method are generally in good agreement with valuable theoretical and experimental results. The calculation results indicate that for high-Z highly ionized atom, some forbidden transitions are very important.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

799-803

Citation:

Online since:

January 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. L. Wong, M. J. May, P. Beiersdorfer, K. B. Fournier, B. Wilson, G. V. Brown and P. Springer, Phys. Rev. Lett. 90 (2003)235001.

Google Scholar

[2] B. Denne, E. Hinnov, Phys. Scr. 35 (1987)811.

Google Scholar

[3] J. P. Quintenz, D.D. Bloomquist and R. J. Leeper, Prog. Nucl, 30(1996)183.

Google Scholar

[4] M. E. Foord, S. H. Glenzer and R. S. Thoe, Phys. Rev. Lett. 85(2000)992.

Google Scholar

[5] S. H. Glenzer, K. B. Fournier and B. G. Wilson, Phys. Rev. Lett. 87(2001)045002.

Google Scholar

[6] K. Honda, K. Mima and F. Koike, Phys. Rev. E 55(1997)4594.

Google Scholar

[7] P. Palmeri, P. Quinet, Atom. Date Nucl. Data Tables 93(2007)537.

Google Scholar

[8] Z. W. Wu, C. Z. Dong and J. Jing. Phys. Rev. A 86(2012)022712.

Google Scholar

[9] J.L. Zeng, G. Zhao and J.M. Yuan, Atom. Date Nucl. Data Tables 93(2007)199.

Google Scholar

[10] S.B. Utter, P. Beiersdorfer, E. Träbert. Phys. Rev. A 67(2003)012508.

Google Scholar

[11] P.H. Norrington, 2002, Available from : <http: /www. am. qub. ac. uk/>.

Google Scholar

[12] I.P. Grant, B.J. McKenzie, P.H. Norrington, D.F. Mayers and N.C. Pyper, Comput. Phys. Commun. 21(1980)207.

Google Scholar

[13] B.J. Mckenzie, I.P. Grant and P.H. Norrington, Comput. Phys. Commun. 21(1980)233.

Google Scholar

[14] K.G. Dyall. I.P. Grant, C.T. Johnson, F.A. Parpia and E.P. Plummer, Comput. Phys. Commun. 55(1989)425.

Google Scholar

[15] I.P. Grant, Phys.B. 7(1974)1458.

Google Scholar

[16] J. F. Seely, J. O. Ekberg and C. M. Borown, Phys. Rev. Lett. 57(1986) 2924.

Google Scholar

[17] J. L. Zeng, G. Zhao and J. M. Yuan, Atom. Data and Nuclear Data Tables, 93(2007): 199.

Google Scholar

[18] P. Palmeri, P. Quinet, É. Biémont and E. Träbert, At. Data. Nucl. Data Tables 93(2007)537.

DOI: 10.1016/j.adt.2006.12.003

Google Scholar

[19] S. Song, F. Peng and G. Jiang. J. Phys. B: At. Mol. Opt. Phys. 39 (2006) (2087).

Google Scholar

[20] L. Hao, G. Jiang. Atom. Data Nucl. Data 94 (2008) 739.

Google Scholar

[21] F. Hu, G. Jiang, W. Hong and L. Hao. Eur. Phys. J. D 49 (2008) 293.

Google Scholar

[22] H.J. Hou, G. Jiang, F. Hu and L. Hao. Atom. Data Nucl. Data 95 (2009) 125.

Google Scholar

[23] L. Zhang, G. Jiang, L. Hao and B. Deng. Phys. Scr. 83 (2011) 025302.

Google Scholar

[24] L. Hao, G. Jiang. Phys. Rev. A 83(2011)012511.

Google Scholar

[25] M. Xu, G. Jiang, B.L. Deng and G.J. Bian, Atom. Data Nucl. Data Tables, 100 (2014)1357.

Google Scholar