Superhydrophobic Surface Preparation Technology and its Progress

Article Preview

Abstract:

With the wide application of various functional materials, corrosion problems have not only caused huge losses in economy but also made a waste of energy and resources. Superhydrophobic surface treatment technology, which is a new anticorrosion technology, can inhibit the corrosion of various functional materials effectively. This paper reviews the advances in research on superhydrophobic surface, introduces the basic theory of superhydrophobic surface, summarizes the preparation method of super hydrophobic surface and the existing problems, and introduces the latest research progress of functional superhydrophobic materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

958-963

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] MIWAM, NAKAJIMAA, FUJISHIMAA: Langmuir Vol. 13 (2000), p.5754.

Google Scholar

[2] NAKAJIMAA, HASHIMOTOK, WATANABET, et al: Langmuir Vol. 16 (2000), p.5754.

Google Scholar

[3] BHUSHANB, JUNGYC, KOCHK: Langmuir Vol. 25 (2009), p.7044.

Google Scholar

[4] KULINICHSA, FARHADIS, NOSEK, et al: Langmuir Vol. 27 (2011), p.25.

Google Scholar

[5] ISHIZAKT, HIEDAJ, SAITON, et al: Electrochim Acta Vol. 55 (2010), p.7094.

Google Scholar

[6] CARLBORGCF, VANDER WIJINGAARTW: Langmuir Vol. 27 (2011), p.487.

Google Scholar

[7] BORMASHENKOE, POGREBR, BOAMASHENKOY, et al: Langmuir Vol. 24 (2008), p.12119.

Google Scholar

[8] BALUB, BERRYAD, HESSDW, et al: Lab Chip (2009).

Google Scholar

[9] H.Z. Chen, T. Geng, X. Zhang, et al: Chemical Research Vol. 4 (2013), p.434.

Google Scholar

[12] L. C. Gao, MCCARTHY T J: Langmuir Vol. 23 (2007), p.13243.

Google Scholar

[13] L. C. Gao, MCCARTHY T J: Langmuir Vol. 23 (2007), p.3762.

Google Scholar

[14] MCHALE G: Langmuir Vol. 23 (2007), p.8200.

Google Scholar

[15] J. Zhang, J. Wang, Y. Zhao, et al: Soft Matter Vol. 4 (2008), p.2232.

Google Scholar

[16] YOON Y I, MOON H S, LYOO W S, et al: J Colloid Interface Sci Vol. 320 (2008), p.91.

Google Scholar

[17] Y. Xiu, HESS D W, WONG C P: J Colloid Interface Sci Vol. 326 (2008), p.465.

Google Scholar

[18] TAERINO R, FABBRI E, MESS ORI M, et al: J Colloid Interface Sci Vol. 325 (2008), p.149.

Google Scholar

[19] MANCA M, CORTESE B, VIOLA I, et al: Langmuir Vol. 24 (2008), p.1833.

Google Scholar

[20] W. Wu, M. Chen, S. Liang, et al: J Colloid Interface Sci Vol. 326 (2008), p.478.

Google Scholar

[21] L. Zhao, Q. Liu, R. Gao, et al: Corrosion Science Vol. 80 (2014), p.177.

Google Scholar

[22] Y. Liu, X. Yin, Zhang. J, et al: Electrochimica Acta Vol. 125 (2014), p.395.

Google Scholar

[23] Mahajan M, Bhargava S K, O'Mullane A P: Electrochimica Acta Vol. 101 (2013), p.186.

Google Scholar

[24] YOON H, PARK J H, KIMG H: Macromol Rapid Commun Vol. 2010, 31 (16): 1435-1439.

Google Scholar

[25] PISUCHPEN T, CHAIM-NGOEN N, INTASANTA N, et al: Langmuir Vol. 27 (2011), p.3654.

DOI: 10.1021/la104978e

Google Scholar

[26] BERENDJCHI A: Nanoscale Res Lett Vol. 6 (2011), p.594.

Google Scholar

[27] X. S. Cai, X. Y. Xiao: Modern Chemical Industry Vol. 1 (2013), p.22.

Google Scholar

[28] W. Yang, B. Pei, H. Guo, et al: Journal o f Northwest Normal University ( Natural Science) Vol. 3 (2011), p.54.

Google Scholar

[29] T. S. Yang, H. Tian, Y. Q. Chen: J Sol-Gel Sci Techn Vol. 49 (2009), p.243.

Google Scholar