Vibration Characteristics of Non-Metal Flight Control Structures in Extremely High Temperature Environments

Article Preview

Abstract:

A self-developed extension configuration of high-temperature ceramic pole was used to transfer the vibration signals to non-high temperature zone, and the vibration signals of composite wing structure under high-temperature environment were identified by the ordinary acceleration sensors. The experimental measurement on the key vibration characteristic parameters of composite wing structure under high temperature thermal vibration environment up to 1100°C (e.g., the natural frequency, mode shape) was realized. The experimental results can provide an important basis for the dynamic performance analysis and safety design of composite wing structure under high-temperature thermal vibration conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

265-270

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. S. Natalie: In Proceeding of the 27th International Congress of the Aeronautical Sciences, Vol. 3, Nice, France, (2010).

Google Scholar

[2] B. H. Jeon, H. W. Kang and Y. S. Lee: In Proceeding the 9th International Congress on thermal stresses. Budapest, (2011).

Google Scholar

[3] D. F. Wu, S. Wu, Y. W. Wang, Z. T. Gao, and J. L. Yang: Transactions of the Institute of Measurement and Control, vol. 36 (2014), p.845.

Google Scholar

[4] D.F. Wu, F. Su, C. X. Liu, R. H. Mao, C. N. Chen, Y. W. Wang, L. Huang: International Journal of Mechanics and Materials in Design, Vol. 6 (2010), p.331.

Google Scholar

[5] D. F. Wu, B. Pan, Z. T. Gao, M, Mu, L. Zhu and Y. W. Wang: Journal of Experimental Mechanics. Vol. 27 (2012): p.255.

Google Scholar

[6] D. F. Wu, L. M. Zheng, B. Pan, B. Sun and M. Mu: Chinese Journal of Theoretical and Applied Mechanics. Vol. 44(2012): p.297.

Google Scholar

[7] L. M. Zheng, D. F. Wu, B. Pan, Y. W. Wang and B. Sun: Applied Thermal Engineering, Vol. 60(2013), p.379.

Google Scholar

[8] D. F. Wu, Y.W. Wang, B. Pan, M. Mu and L. Zhu: Materials and Design, Vol. 40(2012): p.502.

Google Scholar

[9] D. F. Wu, S.G. Zhao, B. Pan, Y. W. Wang, J. Wang, M. Mu and L. Zhu: Chinese Journal of Theoretical and Applied Mechanics. Vol. 45(2013): p.598.

Google Scholar

[10] B. Pan, D.F. Wu, C.Y. Wang: Measurement Science and Technology, Vol. 22 (2011), p.1.

Google Scholar

[11] L. M. Zheng, D. F. Wu, A. F. Zhou, B. Pan, Y. W. Wang, J. Wang: International Journal of Thermophysics, Vol. 35(2014): p.1557.

Google Scholar

[12] Cohen, L. Time-frequency analysis: theory and applications. Bai Juxian, translated. (Xi'an: Xi'an Jiaotong University Press, 1998).

Google Scholar

[13] D. F. Wu, S. G. Zhao, B. Pan, Y. W. Wang, M. Mu and S. Wu: Acta Aeronautica et Astronautica Sinica, Vol. 33 (2012): p.1633.

Google Scholar

[14] Z. Q. Wu, H. Cheng, W. Zhang, H.B. Li, and F. J. Kong: Acta Aeronautica et Astronautica Sinica, Vol. 34 (2013): p.334.

Google Scholar