[1]
IEA Handbook Key World Energy Statistics 2014,. [Electronic source].
Google Scholar
[2]
IEA Handbook Key World Energy Statistics 2013,. [Electronic source].
Google Scholar
[3]
Elsafty, A., Al-Daini, A.J. Economical comparison between a solar-powered vapor absorption air-conditioning system and a vapor compression system in the Middle East (2002) Renewable Energy, 25, p.569–583.
DOI: 10.1016/s0960-1481(01)00078-7
Google Scholar
[4]
Shaahid, S.M., Elhadidy, M.A. Economic analysis of hybrid photovoltaic diesel battery power systems for residential loads in hot regions-a step to clean future (2008) Renewable and Sustainable Energy Reviews, Vol. 12, pp.488-503.
DOI: 10.1016/j.rser.2006.07.013
Google Scholar
[5]
Krektunov, A.O., Aliksikov, I.U. Kimaticheskiye systemy sovremennogo gostinichnogo kompleksa [Climatic systems of the modern hotel complex] (2008) Magazine ABOK, 1, pp.38-43.
Google Scholar
[6]
Vangtook, P., Chirarattananon, S. Application of radiant cooling as a passive cooling option in hot humid climate (2007) Building and Environment, 42 (2) p.543–556.
DOI: 10.1016/j.buildenv.2005.09.014
Google Scholar
[7]
Silkin, N.V. Absorbtsionnyyr kholodilnyye mashiny [Absorption refrigerators] (2008) Magazine ABOK, 1, pp.44-55.
Google Scholar
[8]
Bandarenko, A.V., Bukharin, N.N., Timofeevskiy, L.S. Kholodilnyye mashiny [Refrigerators] (1997) Politekhnika, 499 p.
Google Scholar
[9]
Karamangil M.I., Coskun S., Kaynakli O., Yamankaradeniz N. A simulation study of performance evaluation of single-stage absorption refrigeration system using conventional working fluids and alternatives (2010).
DOI: 10.1016/j.rser.2010.04.008
Google Scholar
[10]
Mazela, A.A., Hanriot, S.M., Cbezas-Gymez, L., Sobre, J.R. Using engine exhaust gas as energy source for an absorption refrigeration system (2010) Applied energy, 87(4), pp.11471-1148.
DOI: 10.1016/j.apenergy.2009.07.018
Google Scholar
[11]
Kumar, S., Prasatkaew, B. A low carbon cooling system using renewable energy resources and technologies (2010) Energy and Buildings, 42, pp.1453-1462.
DOI: 10.1016/j.enbuild.2010.03.015
Google Scholar
[12]
Zhai, X.Q., Wang, R.Z., Wu, J.Y., Dai, Y.J., Ma, Q. Design and performance of a solar-powered air-conditioning system in a green building (2008) Applied Energy, 85(5), pp.297-311.
DOI: 10.1016/j.apenergy.2007.07.016
Google Scholar
[13]
Borodov V.I., Osipov U.V., Suloev, U.N. Konditsionirovaniye voxdukha: effectivnost I kichestvo [Air conditioning: efficiency and quality] (2011) Santekhnika. Otopleniye. Konditsionirovaniye, 11, pp.68-70.
Google Scholar
[14]
Petrichenko, M., Tseytin D., Nemova, D., Kharkov, N. Autonomous energy efficient co-generation units (2014) Applied Mechanics and Materials, Vols. 672-674, pp.580-584.
DOI: 10.4028/www.scientific.net/amm.672-674.580
Google Scholar
[15]
Tsirlin, A.M., Grigorevskii, I.N., Zubov, D.V. Thermodynamic analysis and optimization of an absorption refrigeration cycle (2009) Theoretical Foundations of Chemical Engineering, 43 (6), pp.899-905.
DOI: 10.1134/s0040579509060074
Google Scholar
[16]
Gogoi, T.K., Talukdar, K. Thermodynamic analysis of a combined reheat regenerative thermal power plant and water–LiBr vapor absorption refrigeration system (2014) Energy Conversion and Management, 78, pp.595-610.
DOI: 10.1016/j.enconman.2013.11.035
Google Scholar
[17]
Labus, J., Bruno, J.C., Coronas, A. Performance analysis of small capacity absorption chillers by using different modeling methods (2013) Applied Thermal Engineering 58, pp.305-313.
DOI: 10.1016/j.applthermaleng.2013.04.032
Google Scholar
[18]
Zinnet, M., Romauld, R., Haberschill, P. A numerical model for the dynamic simulation of a recirculation single-effect absorption chiller (2012) Energy Conversion and Management, 62, pp.51-63.
DOI: 10.1016/j.enconman.2012.04.007
Google Scholar