Numerical Flows Recovery Analysis for Trunkline Failures

Article Preview

Abstract:

The article describes numerical method of physical gas flow parameters recovery at accidents investigation, which are conditioned by guillotine rupture of a segment in gas trunkline and distribution pipeline systems. The information about full-scale measurements of time dependences of gas flow parameters at defined points inside pipelines system and at its boundaries is the base for recovery implementation at numerical investigation of accidents. Numerical recovery is carried out by defining and solving a special identification problem.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1292-1300

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Seleznev, V.E. Ispolzovaniye kompyuternykh gazodinamicheskikh simulyatorov dlya povysheniya bezopasnosti / Bezopasnost truda v promyshlennosti [CFD simulators application for higher safety / Operation Safety in Industry] (2004).

Google Scholar

[2] Boichenko, A.L., Seleznev, V.E. Ob odnom iz metodov obnaruzheniya i lokalizatsii razryvov magistralnykh gazoprovodov s ispolzovaniyem kompyuternykh gazodinamicheskikh simulyatorov / Bezopasnost truda v promyshlennosti [On one method of trunkline rupture detection and location using CFD simulators / Operation Safety in Industry] (2004).

Google Scholar

[3] Seleznev, V.E. Chislennyy analiz pozharnoy opasnosti magistralnykh gazoprovodov / Bezopasnost truda v promyshlennosti [Numerical Fire Risk Analysis of Gas Trunklines / Operation Safety in Industry] (2005) No. 6, p.38–43. (rus).

Google Scholar

[4] Seleznev, V.E., Pryalov, S.N. Computational fluid dynamics of trunklines systems. Methods for constructing flow models in branched trunklines and open channels (2013) M.: KRASAND, 544 p.

Google Scholar

[5] Grachev, V.V., Shcherbakov, S.G., Yakovlev, E.I. Dinamika truboprovodnykh sistem [Dynamics of pipeline systems] (1987) M.: Science, 467 p. (rus).

Google Scholar

[6] Sardanashvili, S.A. Raschetnyye metody i algoritmy (truboprovodnyy transport gaza) [Computational techniques and algorithms (pipeline gas transmission)] (2005).

Google Scholar

[7] Merenkov, A.P., Sennova, E.V., Sumarokov, S.V. Matematicheskoye modelirovaniye i optimizatsiya sistem teplo-, vodo-, nefte- i gazo-snabzheniya [Mathematical Modeling and optimization of heat-, water-, petro-, and gas-supply system] (1992).

Google Scholar

[8] Osiadacz, A. Simulation and Analysis of Gas Networks (1987) Gulf Publishing Company, Houston.

Google Scholar

[9] Santos, L., Alvarez, O. Nuevos métodos de Càlculo y simulación de Redes de Transport de Gas Natural (1998) Gas del Estado, Buenos Aires.

Google Scholar

[10] Algoritmy i programmy vosstanovleniya zavisimostey [Algorithms and programs for relations recovery] (1984) Ed. by Vapnik V.P., M.: Science. (rus).

Google Scholar

[11] Seleznev, V.E., Kiselev, V.V. Numerical Monitoring of Natural Gas Delivery Discrepancy for Cities Energy Preparedness / Bérenguer, Grall & Guedes Soares (eds) / Proceeding of The European Safety and Reliability Conference, ESREL-2011: Advances in Safety, Reliability and Risk Management (2012).

DOI: 10.1201/b11433-370

Google Scholar

[12] Vasiliev, F.P. Metody optimizatsii [Optimization methods] (2002) M.: Faktorial Press, 824 p. (rus).

Google Scholar