[1]
Omer, E., Izzuddin, B.A., Elghazouli, A.Y. Failure of Lightly Reinforced Concrete Floor Slabs with Planar Edge Restraints under Fire (2009) Journal of Structural Engineering, рp. 1068–1080.
DOI: 10.1061/(asce)0733-9445(2009)135:9(1068)
Google Scholar
[2]
Huang, Z., Burgess, I.W., Plank, R.J. Three-Dimensional Analysis of Reinforced Concrete Beam-Column Structures in Fire (2009) Journal of Structural Engineering, рp. 1201–1212.
DOI: 10.1061/(asce)0733-9445(2009)135:10(1201)
Google Scholar
[3]
Dwaikat, M.B., Kodur, V.K.R. Response of Restrained Concrete Beams under Design Fire Exposure (2009) Journal of Structural Engineering, pp.1408-1417.
DOI: 10.1061/(asce)st.1943-541x.0000058
Google Scholar
[4]
Cashell, K.A., Elghazouli, A.Y., Izzuddin, B.A. Ultimate Behavior of Idealized Composite Floor Elements at Ambient and Elevated Temperature (2010) Fire Technology, 46, pp.67-89.
DOI: 10.1007/s10694-009-0089-5
Google Scholar
[5]
Lee, K.K. Evaluation of Concrete Behaviour under High Temperature (2008) Thesis PhD, University of Colorado, USA, Department of Civil, Environmental and Architectural Engineering, 188 р.
Google Scholar
[6]
Dwaikat, M.B. Flexural Response of Reinforced Concrete Beams Exposed to Fire (2009) Thesis PhD, Michigan State University, USA, Vol. 1, 402 p.
Google Scholar
[7]
Fedorov, V.S., Livitsky, V.E., Molchadsky, I.S., Alexandrov, A.V. Ognestoykost i pozharnaya opasnost stroitelnykh konstruktsiy [Fire resistance and fire danger of building structures] (2009) M.: АSV, 408 p. (rus).
Google Scholar
[8]
Morozov, V.I. Korpusa vysokogo davleniya dlya energeticheskikh, stroitelnykh i spetsialnykh tekhnologiy [Pressure vessels for power, construction and special technologies] (2011) SPBGASU, 394 p. (rus).
Google Scholar
[9]
Balazs, G.L., Lubloy, E. Reinforced Concrete Structures In and After Fire, Concrete Structures (2012) Journal of the Hungarian Group of fib, рp. 72-80.
Google Scholar
[10]
Giroldo, F., Strength, B. Between Mesh Reinforcement and Concrete at Elevated Temperatures (2010) Thesis PhD, University of Manchester, Faculty of Engineering and Physical Sciences, 274 p.
Google Scholar
[11]
Milovanov, A.F. Stoykost zhelezobetonnykh konstruktsiy pri pozhare [Reinforced concrete structure endurance at fire] (1998) Stroyizdat, 301 p. (rus).
Google Scholar
[12]
Yupu, S., Zhong, Z. Likun, Q., Changjiang, Y. Biaxial tensile-compressive Experiment of Concrete at high Temperatures (2007) Front. Archit. Civ. Eng. China, 1(1), pp.94-98.
DOI: 10.1007/s11709-007-0009-z
Google Scholar
[13]
STO 36554501-006-2006. Rules on Provision of Fire Resistance and Persistence of Reinforced Concrete Structures (2006) (rus).
Google Scholar
[14]
ENV 1992-1. Eurocode 2: Design of concrete Structures. General Rules – Structural fire Design, Part 1-2 (1992).
Google Scholar
[15]
Roitman, V.M. Inzhenernyye resheniya po otsenke ognestoykosti proyektiruyemykh i rekonstruiruyemykh zdaniy [Engineering Solutions on Evaluation of Fire Resistance of Designed and Restructured Buildings] (2001) Fire Safety and Science, 382 p.
Google Scholar
[16]
Belov, V.V. Supercritical deformation and limiting conditions of statically indefinable reinforced-concrete designs (2012) Bulletin of Civil Engineers, 1 (30), pp.70-74.
Google Scholar
[17]
Shi, X., Tan, T. -H., Tan, K. -H., Guo, Z. Influence of Concrete Cover on Fire Resistance of Reinforced Concrete Flexural Members (2004) Journal of Structural Engineering, pp.1201-1212.
DOI: 10.1061/(asce)0733-9445(2004)130:8(1225)
Google Scholar
[18]
Jeffers, E., Sotelino, E.D. Fiber Heat Transfer Element for Modelling the Thermal Response of Structures in Fire (2009) Journal of Structural Engineering, pp.1191-1200.
DOI: 10.1061/(asce)st.1943-541x.0000043
Google Scholar
[19]
Balendran, R.V., Nadeem, A., Maqsood, T., Leung, H.Y. Flexural and Split Cylinder Strengths of HSC at Elevated Temperatures (2003) Fire Technology, 39, pp.47-61.
DOI: 10.1023/a:1021727226913
Google Scholar
[20]
Belov, V.V., Semenov, K.V., Renev, I.A. Ognestoykost zhelezobetonnykh konstruktsiy: modeli i metody rascheta [Fire resistance of reinforced concrete structures: calculation models and methods] (2010).
Google Scholar
[21]
Moftah, M. Numerical Modelling and Performance of Reinforced Concrete Members under Fire Condition (2008) Thesis PhD, University of Western Ontario, Canada, 317 p.
Google Scholar
[22]
Levitsky, V.E. Diagrammnyy metod resheniya staticheskoy zadachi rascheta ognestoykosti zhelezobetonnykh konstruktsiy [Diagram method of solving statical task of calculation of reinforced concrete structure fire resistance] (2006).
Google Scholar
[23]
Belov, V.V., Veselov, A.A. Mechanics of corroded flexible reinforced concrete elements (2013) World Applied Sciences Journal, 23, рp. 197-202.
Google Scholar
[24]
Belov, V.V., Nikitin, S.E. Diachronic model of strain of corrosion-damaged reinforced concrete elements with cracks (2011) Bulletin of Civil Engineers, 4 (29), p.18–25.
Google Scholar
[25]
Harajli, M., Hamad, B., Rteil, A. Effect of Confinement on Bond Strength Between Steel Bars and Concrete (2004) ACI Structural Journal, 101(5), pp.595-603.
DOI: 10.14359/13381
Google Scholar