Reduced Thermal Resistance of a Two-Layer Wall Construction

Article Preview

Abstract:

The topic of the article regards to the development of new SP 50.13330.2012 «Heat protection of buildings» actualized edition of SNIP 23-02-2003. The article focuses on the reduced thermal resistance, which takes into account the influence of thermally conductive inclusions by the coefficient of heattechnical uniformity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-56

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Energy Efficiency. D. Eastop, D.R. Croft. Longman. 1990. 400 p.

Google Scholar

[2] Sormunen, P. Energoeffektivnost zdaniy. Situatciya v Finlandii. [The energy efficiency of buildings. The situation in Finland] (2010) Magazine of Civil Engineering, 1, pp.7-8. (rus).

Google Scholar

[3] Jormalainen, J., Käkelä, P. Sustainability of Polyurethane Thermal Insulation (2011) 9-th Nordic Symposium on Building Physics, Tempere, Finland, 6p.

Google Scholar

[4] Vostrikova, E.V., Energoeffektivnaya rekonstruktciya zhilikh domov 1960-h godov. [Energy-efficient renovation of residential buildings of the 1960s] (2014) The dissertation of Saint-Petersburg state Polytechnic University, 57 p. (rus).

Google Scholar

[5] Ehhort, H., Reiss, J., Hellwig, R. Energy-efficient buildings. Analysis of the current state and prospects of development based on the completed projects (2006) AВОК, No. 2, p.36–49.

Google Scholar

[6] Samuel Faye Gamtessa. An explanation of residential energy-efficiency retrofit behavior in Canada (2013) Energy and Buildings, Vol. 57, pp.155-164.

DOI: 10.1016/j.enbuild.2012.11.006

Google Scholar

[7] Natasa Nord, Stine FjærliSjøthun. Success factors of energy efficiency measures in buildings in Norway (2014) Energy and Buildings, In Press, Accepted Manuscript, Available online.

DOI: 10.1016/j.enbuild.2014.03.010

Google Scholar

[8] National Building Code of Finland, Part D3.

Google Scholar

[9] A.A. Kaklauskas, J.A. Rute, E.K.A. Zavadskas, A. a. Daniunas, V.A. Pruskus, J.A. Bivainis, R.B. Gudauskas, V.A. Plakys, Passive House model for quantitative and qualitative analyses and its intelligent system (2012).

DOI: 10.1016/j.enbuild.2012.03.008

Google Scholar

[10] Energy Concept for an Environmentally Sound, Reliable and Affordable Energy Supply. Federal Ministry of Economics and Technology (2010) Berlin, (BMWi), Public relations, 32 p.

Google Scholar

[11] Danny, L.D., Harvey Recent Advances in Sustainable Buildings: Review of the Energy and Cost Performance of the State-of-the-Art Best Practices from Around the World (2013) Annual Review of Environment and Resources, Vol. 38, pp.281-309.

DOI: 10.1146/annurev-environ-070312-101940

Google Scholar

[12] Vatin, N.I., Nemova, D.V., Rymkevich, P.P., Gorshkov, A.S.: Influence of building envelope thermal protection on heat loss value in the building (2012) Magazine of Civil Engineering, No. 8, рр. 4-14.

DOI: 10.5862/mce.34.1

Google Scholar

[13] EN 15603: 2008 Energy performance of buildings. Overall energy use and definition of energy ratings.

Google Scholar

[14] Vatin, N., Gorshkov, A., Rymkevich, P., Nemova, D., Tarasova, D., Nonstationary thermal conduction through the building envelope (2014) Applied Mechanics and Materials, Vols. 670-671, pp.365-369.

DOI: 10.4028/www.scientific.net/amm.670-671.365

Google Scholar

[15] Nemova, D., Murgul, V., Golik, A., Chizhov, E., Pukhkal, V., Vatin N., Reconstruction of administrative buildings of the 70s: the possibility of energy modernization (2014) Journal of Applied Engineering Science, Vol. 12 (1), pp.37-44.

DOI: 10.5937/jaes12-5610

Google Scholar

[16] Penic, M., Vatin, N., Murgul, V. Double skin facades in energy efficient design (2014) Applied Mechanics and Materials, Vol. 680, pp.534-538.

DOI: 10.4028/www.scientific.net/amm.680.534

Google Scholar

[17] A. Borodinecs, B. Gaujena, The implementation of building envelopes with controlled thermal resistance (2012) 10th International Conference on Healthy Buildings 2012, Australia, Brisbane, pp.1715-1722.

Google Scholar

[18] Federalnyy Zakon ot 23. 11. 2009 No. 261-FZ Ob energosberezhenii i o povyshenii energeticheskoy effectivnosti vnesenii izmeneniy v otdelnye zakonodatelnye akty Rossiyskoy Federatsii [Federal law No. 261 On energy saving and energy efficiency improvements and on amendments to Certain Legislative Acts of the Russian Federation].

DOI: 10.31085/9785392337583-2020-184

Google Scholar

[19] SNiP 23-02-2003. Teplovaya zaschita zdaniy. [SNiP 23-02-2003 Heat protection of buildings]. M., 2004. (rus).

Google Scholar

[20] SP 50. 13330. 2012 Teplovaya zaschita zdaniy (actualizirovanaya redakciya SNiP 23-02-2003). [SP 50. 13330. 2012 Heat protection of buildings actualized edition of SNIP 23-02-2003]. M., 2012. (rus).

Google Scholar

[21] Gorshkov, A.S.: The energy efficiency in the field of construction: questions of norms and standarts and solutions for the reduction of energy consumption at buildings (2010) Magazine of Civil Engineering, No. 1, рр. 9-13.

Google Scholar

[22] Matrosov, Y. A, Mark Chao, Cliff Majersik: Increasing Thermal Performance and Energy Efficiency of Buildings in Russia: Problems and Solutions. [Electronic resource]. System requirements: AdobeAcrobatReader. URL http:, www. cenef. ru/file/St-267e. pdf.

Google Scholar

[23] Gorshkov, A.S., Gladkih, A.A. Vliyanie rastvornyh shvov kladki na parametry teplotehnicheskoy odnorodnosti sten iz gazobetona [The influence of mortar joints of masonry on the parameters of the thermal uniformity of the walls of aerated autoclaved concrete] (2010).

Google Scholar

[24] GrinfeldI, G., Gorshkov, A., Vatin, N., Tests results strength and thermophysical properties of aerated concrete block wall samples with the use of polyurethane adhesive (2014) Advanced Materials Research, Vols. 941-944, pp.786-799.

DOI: 10.4028/www.scientific.net/amr.941-944.786

Google Scholar

[25] Graubohm, M., Brameshuber, W., Investigations on the gluing of masonry units with polyurethane adhesive (2010), 8th International Masonry Conference 2010 in Dresden, pp.108-109.

Google Scholar

[26] RMD 23-16-2012 Sankt-Peterburg. Rekomendatsii po obespecheniyu energeticheskoi effektivnosti zhilyh i obschestvennih zdaniy [RMD 23-16-2012 Saint Petersburg. Recommendations to ensure the energy efficiency of residential and public buildings]. (rus).

Google Scholar

[27] SP 23-101-2004 Proektirovanie teplovoi zaschity zdaniy [SP 23-101-2004 Design of thermal protection of buildings]. (rus).

Google Scholar

[28] Krivoshein, A.D., Fedorov, S.V. K voprosu o raschete privedennogo soprotivleniya teploperedache ograzhdayuschih konstrukciy". ["To the question of the calculation of the reduced thermal resistance of frame structures, ] (2010).

Google Scholar

[29] Krivoshein, A.D., Fedorov, S.V. Rukovodstvo polzovatelya programmnim kompleksom «TEMPER» po raschetu temperaturnih polei ograzhdayuschih konstrukciy zdaniy" ["User Manual software package "TEMPER" on the calculation of temperature fields of building envelopes, ], SibADI, Omsk, 1997, 36 p. (rus).

Google Scholar

[30] Sokolov, N.A., Gorshkov, A.S. Teploprovodnost stroitelnyh materialov i izdely: uroven garmonizatsii rossiyskih i evropeyskih stroitelnyh standartov" ["The thermal conductivity of building materials and products: the level of harmonization of Russian and European building standards, ] (2014).

Google Scholar

[31] Gagarin, V.G. Teplofizicheskie problemy sovremennykh stenovykh ograzhdayushchikh konstruktsiy mnogoetazhnykh zdaniy [Thermalphysic Problems of Contemporary Wall Enclosure Structures of Buildings] (2009).

Google Scholar

[32] Nemova, D.V., Spiridonova, T.I., Kurazhova, V.G. Unknown properties of the well-known material (2012), Construction of Unique Buildings and Structures, No. 1, pp.36-46.

Google Scholar