[1]
Suslova, A., Sivokhin, A., Nestacionarniy produx kak sposob predotvrachenia naledi na krovle [Removing ice dams by using of а transient air hole] (2014) Construction of Unique Buildings and Structures, 5(20), pp.54-64.
Google Scholar
[2]
Vatin, N. I, Petrichenko, M.R., Nemova, D.V., Staritcyna, A.A., Tarasova, D.V. Renovation of educational buildings to increase energy efficiency (2014) Applied Mechanics and Materials, 633-634, pp.1023-1028.
DOI: 10.4028/www.scientific.net/amm.633-634.1023
Google Scholar
[3]
Vatin, N. I, Volodin, V.V., Zolotareva, E.A., Petrov, K.V. Rekonstruktsiya krysh Sankt-Peterburga na osnove legkikh stalnykh tonkostennykh konstruktsiy i antiobledenitelnoy sistemy [Reconstruction of the roofs in St. Petersburg on the basis of light steel thin-walled structures and de-icing system] (2010).
Google Scholar
[4]
Gorshkov, A.S., Vatin, N.I., Urustimov, A.I., Rymkevich, P.P. Raschetnyiy metod obosnovaniya tehnologicheskih meropriyatiy po predotvrascheniyu obrazovaniya ledyanyih damb n akryishah zdaniy so skatnoy krovley [Calculating method of substantiation of technological measures to prevent the formation of ice dams on the buildings with a sloping roof] (2012).
DOI: 10.5862/mce.29.9
Google Scholar
[5]
Bogoslovskiy, V.N. Stroitelnaya teplofizika [Structural thermophysics] (2006) Avok Severo-Zapad; Second Edition, p.415.
Google Scholar
[6]
Ivanov, A.N., Trembitskiy, M.A. Penobeton zadannoy sredney plotnosti dlya utepleniya cherdachnykh perekrytiy [Foam concrete with a predetermined an average density for insulation of an attic floor] (2011).
Google Scholar
[7]
Gorshkov, A.S., Zadvinskaya, T.O. Comprehensive method of energy efficiency of residential house (2014) Advanced Materials Research, 953-954, pp.1570-1577.
DOI: 10.4028/www.scientific.net/amr.953-954.1570
Google Scholar
[8]
Nemova, D.V. Renovatsiya cherdachnykh perekrytiy kak inzhenerno-tekhnicheskoye meropriyatiye po predotvrashcheniyu obrazovaniya naledey na kryshakh [Renovation attic floors as engineering and technical measures to prevent the formation of ice dams on roofs] (2012).
Google Scholar
[9]
Petrichenko, M.R., Nemova, D.V., Staritcyna, A.A., Tarasova, D.V. The Double-Layer Nonstationary Heat Conduction Measures to Prevent the Formation Ice-Dams on the Roof (2014) Applied Mechanics and Materials, 580-583, pp.2308-2315.
DOI: 10.4028/www.scientific.net/amm.580-583.2308
Google Scholar
[10]
Pierce, M. Causes and Cures of Attic Condensation And Roof Ice Damming Problems (2005) Department of Design&Environmental Analysis Cornell University Ithaca, NY. Housing Fact Sheet, pp.11-17.
Google Scholar
[11]
Sharapov, D., Shkhinek, K. Numerical calculation of the ice grow and empirical calculation results (2014) Advanced Materials Research, 834-836, pp.1448-1454.
DOI: 10.4028/www.scientific.net/amr.834-836.1448
Google Scholar
[12]
Humbarger, R. Attic and cathedral ceiling ventilation and ice dam protection (2009) Interface magazine (RCI Institute), January, pp.32-35.
Google Scholar
[13]
Woods, A. Attic Venting, Attic Moisture, and Ice Dams (2007) Canada Mortgage and Housing Corporation. About Your House. Report CE-13, pp.45-46.
Google Scholar
[14]
Pan, D., Liu, L.M., Michaelides, A., Slater, B., Wang, E. Melting the ice: on the relation between melting temperature and size for nanoscale ice crystals (2011) ACS NANO, 1936-0851, pp.4562-4569.
DOI: 10.1021/nn200252w
Google Scholar
[15]
Welch, B. Ice Dams: Causes, Prevention, and Solutions for Damaging Roof Ice Buildup (1990) The Mother Earth News, January/February 1990, pp.23-26.
Google Scholar
[16]
Ya, J.Y. Issues of Sloping Roof Design of Multi-Storied Buildings (2011) Advanced Materials Research, 374-377, pp.1179-1185.
DOI: 10.4028/www.scientific.net/amr.374-377.1179
Google Scholar
[17]
Gordon, J. Attic Ventilation. Affordable Comfort (2011) Draft Core Conference Grid. Session 6, pp.12-13.
Google Scholar
[18]
Woods, T. Re-examining Roof Ventilation as a Moisture Solution (2008) Canada Mortgage and Housing Corporation. About Your House. Report CE-19, pp.1-7.
Google Scholar
[19]
Cheng, Y. S., Bai, Q. L., Jing, J., Feng, L.L. An Ice-Detecting and Ice-Melting System of Electricity-Transmitting Lines Based on ZigBee Wireless Communication (2011) Advanced Materials Research, 383-390, pp.5000-5005.
DOI: 10.4028/www.scientific.net/amr.383-390.5000
Google Scholar
[20]
Cheng, B.G., Chi, L., Jin, X.L. Research Situation and Prospect for Highway Snowmelt Deicing Technology with Electric Heat Tracing (2011) Applied Mechanics and Materials, 71-78, pp.1865-1869.
DOI: 10.4028/www.scientific.net/amm.71-78.1865
Google Scholar
[21]
Heiselberg, P., Murakarni, S., Roulet, C.A. Ventilation of Large Spaces in Buildings Analysis and Prediction Techniques (1998) IEA-ECB Annex 26, 1395-7953, pp.102-109.
Google Scholar
[22]
Sokova, S.D., Demidov, A.S. Crust Removal On The Cornices Of Metal Roofs (2013) Scientific Herald Of The Voronezh State University Of Architecture And Civil Engineering. Construction And Architecture, 2075-0811, pp.72-80.
Google Scholar
[23]
SNiP (Construction Norms and Regulations) II-26-76*. Krovli.
Google Scholar
[24]
SNiP (Construction Norms and Regulations) II-3-79*. Stroitelnaya teplotekhnika.
Google Scholar
[25]
SNiP (Construction Norms and Regulations) 23-01-9*. Stroitelnaya klimatologiya.
Google Scholar
[26]
SNiP (Construction Norms and Regulations) 41-01-2003. Otopleniye, ventilyatsiya i konditsionirovaniye.
Google Scholar
[27]
GOST (State Standard) 30494-96 Zdaniya zhilyye i obshchestvennyye. Parametry mikroklimata v pomeshchenii.
Google Scholar
[28]
SNiP (Construction Norms and Regulations) 3. 05. 01-85. Vnutrenniye sanitarno-tekhnicheskiye sistemy.
Google Scholar
[29]
Federal Law №4218-1 of the Russian Federation about principles of federal housing policies of 24nd November 1992 [Ob osnovakh federalnoy zhilishchnoy politiki: zakon Rossiyskoy Federatsii ot 24. 12. 1992 №4218-1].
Google Scholar
[30]
Petrichenko, M.R. Tipichnye predelnye zadachi dlya uravneniya Krokko [Typical boundary problems Crocco] (2011) Nauchno-tekhnicheskiye vedomosti SPBGPU, 1, pp.108-112.
Google Scholar