Humidity Conditions of Enclosing Structure with Silicate Brick Veneer and Variable Air Gap

Article Preview

Abstract:

The main function of walling system is to protect from environmental impact and to create favorable climate indoors. At the present time people use such tape of structures, such as: wall with silicate brick veneer, curtain wall system with a thin plaster layer and curtain wall system with air gap as well as without it. The results of the thermomoist calculation of enclosing structures with silicate brick veneer without air gap is presented in article. Technical guidelines for normalization of humidity conditions for data structures are provided in article. The main purpose is to calculate and to develop design consideration for realization enclosing structures with silicate brick veneer without air gap. The results of the calculation show conformity of the walling system to the required energy efficiency, hygiene and comfort standards.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Gagarin, V.G., Kozlov, V.V., Tsykanovskiy, Ye. Yu. Raschet teplozashchity fasadov s ventiliruyemym vozdushnym zazorom [Calculation of thermal protection facades with ventilated air gap] (2004) AVOK, 2, pp.20-28. (rus).

Google Scholar

[2] Gorshkov, A.S., Knatko, M.V., Rymkevich, P.P. Laboratornyye i naturnyye issledovaniya dolgovechnosti (ekspluatatsionnogo sroka sluzhby) stenovoy konstruktsii iz avtoklavnogo gazobetona s litsevym sloyem iz silikatnogo kirpicha [Laboratory and field studies of longevity (operational lifetime) of the wall structure of autoclaved aerated concrete with a facing layer of silica brick] (2004).

Google Scholar

[3] Costa, V.A.F. Transient natural convection in enclosures filled with humid air, including wall evaporation and condensation (2012) International Journal of Heat and Mass Transfer, 55, p.5479–5494.

DOI: 10.1016/j.ijheatmasstransfer.2012.05.016

Google Scholar

[4] Grinfeld, G.I., Morozov, S.A., Sogomonyan, I.A., Zyryanov, P.S. Humidity state of structures of autoclaved aerated concrete in conditions of operation (2011) Magazine of Civil Engineering, 2, pp.33-38.

Google Scholar

[5] Vatin, N.I., Glumov, A.V., Gorshkov, A.S. Vliyaniye fiziko-tekhnicheskikh i geometricheskikh kharakteristik shtukaturnykh pokrytiy na vlazhnostnyy rezhim odnorodnykh sten iz gazobetonnykh blokov [The influence of physico-technical and geometric characteristics of plaster on humidity regime of homogeneous walls from gas-concrete blocks] (2011).

Google Scholar

[6] Grinfeld, G.I., Kuptarayeva, P.D. Kladka iz avtoklavnogo gazobetona s naruzhnym utepleniyem. Osobennosti vlazhnostnogo rezhima v nachalnyy period ekspluatatsii [Clutch of autoclaved aerated concrete with external insulation. Features of humidity conditions in the initial period of operation] (2011).

DOI: 10.5862/mce.26.7

Google Scholar

[7] Mashenkov, A.N. Issledovaniye vozdushnogo rezhima navesnykh ventiliruyemykh fasadov na eksperimentalnom stende U-kon [Research of an air mode of hinged ventilated facades at the experimental stand U-kon] (2009).

Google Scholar

[8] Nemova, D., Murgul, V., Golik, A., Chizhov, E., Pukhkal, V., Vatin, N. Reconstruction of administrative buildings of the 70s: the possibility of energy modernization (2014) Journal of applied engineering science, 12, pp.37-44.

DOI: 10.5937/jaes12-5610

Google Scholar

[9] Murgul, V., Vuksanovic, D., Pukhkal, D., Vatin, N. Development of the ventilation system of historic buildings in St. Petersburg (2014) Applied Mechanics and Materials, 633-634, pp.977-981.

DOI: 10.4028/www.scientific.net/amm.633-634.977

Google Scholar

[10] Gagarin, V.G. Teplofizicheskiye problemy sovremennykh stenovykh ograzhdayushchikh konstruktsiy mnogoetazhnykh zdaniy [Thermophysical problems of modern wall enclosing structures of multi-storey buildings] (2009).

Google Scholar

[11] Averyanov, V.K., Baykova, S.A., Gorshkov, A.S., Grishkevich, A.V., Kochnev, A.P., Leontyev, D.N., Melezhik, A.A., Mikhaylov, A.G., Rymkevich, P.P., Tyutyunnikov, A.I. Regional concept for energy efficiency of residential and public buildings (2012).

Google Scholar

[12] Pukhkal, V., Murgul, V., Vatin, N. Central ventilation system with heat recovery as one of the measures to upgrade energy efficiency of historic buildings (2014) Applied Mechanics and Materials, 633-634, pp.1077-1081.

DOI: 10.4028/www.scientific.net/amm.633-634.1077

Google Scholar

[13] Mukhopadhyaya, P., Kumaran, K., Tariku, F., Van Reenen, D. Application of hygrothermal modeling tool to assess moisture response of exterior walls (2006) Journal of Architectural Engineering, 12, pp.178-186.

DOI: 10.1061/(asce)1076-0431(2006)12:4(178)

Google Scholar

[14] Vatin, N.I., Gorshkov, A.S., Nemova, D.V. Energoeffektivnost ograzhdayushchikh konstruktsiy pri kapitalnom remonte [Energy efficiency walling during overhaul] (2013) Construction of Unique Buildings and Structures, 3 (8), pp.1-11. (rus).

Google Scholar

[15] Vatin, N.I., Golub, I.S., Nechayeva, N. Yu. Silikatnyy kirpich v fasadnykh sistemakh s vozdushnym zazorom [Silicate brick in facade systems with air gap] (2008) Stroyprofile, 5(67), pp.47-49. (rus).

Google Scholar

[16] Vatin, N.I., Grinfeld, G.I., Okladnikova, O.N., Tulko, S.I. Heat resistance of enclosing structures are made of aerated concrete with facing of a silicate brick (2007) Stroyprofile, 5(59), pp.29-32.

Google Scholar

[17] Vatin, N.I., Grinfeld, G.I. Teploperedacha i paropronitsayemost ograzhdayushchikh konstruktsiy iz gazobetona s oblitsovkoy iz silikatnogo kirpicha [Heat transfer and vapour permeability of enclosing structures are made of aerated concrete with facing of a silicate brick] (2007).

Google Scholar

[18] Elenbaas, W. Heat dissipation of Parallel plates by free Convection (1942) Physica, 9, p.1–28.

DOI: 10.1016/s0031-8914(42)90053-3

Google Scholar

[19] Bodia, J.R., Osterle, J.F. The development of free convection between heated vertical plates (1962) Journal Heat Transfer, 84, p.40–43.

DOI: 10.1115/1.3684288

Google Scholar

[20] Sparrow, E.M., Azevedo, L.F.A. Vertical channel natural convection spanning between fully-developed limit and the single-plate boundary-layer limit (1985) International Journal Heat Mass Transfer, 28, p.1847–1857.

DOI: 10.1016/0017-9310(85)90207-8

Google Scholar

[21] Miyamoto, М. Turbulent Free Convection Heat Transfer From Vertical Parallel Plates (1986) Proceeding of the International Heat Transfer Conference, 4, p.1593–1598.

DOI: 10.1615/ihtc8.3200

Google Scholar

[22] Tanda, G. Natural Convection Heat Transfer in vertical channels with and without transverse square ribs (1997) International Journal of Heat Mass Transfer, 40, p.2173–2185.

DOI: 10.1016/s0017-9310(96)00246-3

Google Scholar

[23] Badr, H.M. Turbulent natural convection in vertical parallel-plate channels (2006) International Journal Heat Mass Transfer, 43, p.73–84.

DOI: 10.1007/s00231-006-0084-z

Google Scholar

[24] Ayinde, T.F., Said, S.A.M., Habib, M.A. Experimental investigation of turbulent natural convection flow in a channel (2006) Heat and Mass Transfer, 42, p.169–177.

DOI: 10.1007/s00231-005-0017-2

Google Scholar

[25] Fedorov, A.G., Viskanta, R., Mohamad, А.А. Turbulent heat and mass transfer in an asymmetrically heated, vertical parallel plate channel (1997) International Journal of Heat and Fluid Flow, 18, pp.307-315.

DOI: 10.1016/s0142-727x(97)00010-6

Google Scholar

[26] Mokni, A. Turbulent Mixed Convection in Asymmetrically heated vertical channel (2012)/ Thermal scince, 16, pp.503-512.

DOI: 10.2298/tsci090403018m

Google Scholar

[27] Nemova, D.V., Bogomolova, A.K., Kopylova, A.I. Vlazhnostnyy rezhim ograzhdayushchey konstruktsii s oblitsovkoy silikatnym kirpichom [Humidity conditions of a extermal envelops with facing by a silicate brick] (2014).

Google Scholar

[28] SNiP 23-02-2003. Teplovaya zashchita zdaniy [Construction norms and regulations 23-02-2003. Thermal performance of the buildings] (2003). (rus).

Google Scholar

[29] GOST 30494-2011. Zdaniya zhilyye i obshchestvennyye. Parametry mikroklimata v pomeshcheniyakh [State Standard Specification 30494-2011. Residential and public buildings. Microclimate parameters for indoor enclosures] (2011). (rus).

Google Scholar

[30] SNIP 23-01-99. Stroitelnaya klimatologiya [Construction norms and regulations 23-01-99. Construction climatology] (1999). (rus).

Google Scholar

[31] Nemova, D.V. Propusknaya sposobnost vozdushnoy prosloyki navesnykh ventiliruyemykh fasadov [Capacity of an air layer of the hinged ventilated facades] (2014) Master's thesis, 81 p. (rus).

Google Scholar

[32] Levin, Ye.V., Okunev, A. Yu. Membrannyye sistemy regulirovki vlazhnosti vozdukha [The membrane systems of the control of humidity of air] (2010) Academia. Arkhitektura i stroitelstvo, 3, pp.505-511. (rus).

Google Scholar

[33] Okunev, A. Yu. Perspektivy primeneniya membrannykh tekhnologiy pri ekspluatatsii zdaniy [Prospects of application of membrane technologies in the operation of buildings] (2009) Academia. Arkhitektura i stroitelstvo, 5, pp.476-479. (rus).

Google Scholar

[34] Usachov, V.V., Teplyakov, Okunev, A. Yu., Laguntstov, N.I. Membrane contactor air conditioning system: Experience and prospects (2007) Separation and Purification Technology, 57, pp.502-506.

DOI: 10.1016/j.seppur.2006.09.021

Google Scholar