An Impact of Carbon Nanostructured Additives on the Kinetics of Cement Hydration

Article Preview

Abstract:

There are supplements that could accelerate or slow down the process of setting and formation of the cement stone structure. After examining the effect of these particles, we can predict how they could influence on the growth of concrete strength. It is possible to assess the effect of supplementation activity using the thermo-kinetic method by exothermic effect, which is obtained by wetting and hydration of cement. A calorimetric research of the effect of cement-carbon material was held in this article.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

425-430

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sheykin, A.E., Chehovskiy, Yu.V., Brusser, M.I. Struktura i svoystva tsementnyih betonov [Structure and properties of cement concrete] (1979) Struktura i svoystva tsementnyih betonov, Stroyizdat: Moscow, 344 p. (rus).

Google Scholar

[2] Barabanshchikov, Yu.G. Vasilyev, A.S. The effectiveness of setting and hardening accelerators for sprayed concrete (2012) Magazine of Civil Engineering, 8(34), p.72–78, doi: 10. 5862/MCE. 34. 11. (rus).

DOI: 10.5862/mce.34.11

Google Scholar

[3] Ponomarev, A.N., Shames, A.I., Katz, E.A., Panich, A.M., Mogilyansky, D., Mogilko, E., Grinblat, J., Belousov, V.P. Structural and magnetic resonance study of astralen nanoparticles (2009) Diamond and Related Materials, 18 (2-3), pp.505-510.

DOI: 10.1016/j.diamond.2008.10.056

Google Scholar

[4] Nasibulin, A. G., Koltsova, T., Nasibulina, L. I., Anoshkin, I. V., Semencha, A., Tolochko, O. V., Kauppinen, E. I. A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles (2013).

DOI: 10.1016/j.actamat.2012.12.007

Google Scholar

[5] Mudimela, P., Nasibulina, L., Nasibulin, A., Cwirzen, A., Valkeapaa, M., Habermehl-Cwirzen, K., Malm, J.E.M., Karppinen, M.J., Penttala, V., Koltsova, T., Tolochko, O.V., Kauppinen, E.I. Synthesis of carbon nanotubes and nanofibers on silica and cement matrix materials. Manuscript (2009).

DOI: 10.1155/2009/526128

Google Scholar

[6] Ponomarev, A.N., Egorushkin, V.E., Melnikova, N.V. The role of structural inhomogeneities in the temperature behavior of the thermopower in metallized nanotubes with impurities (2009) Russian Physics Journal, 52(3), pp.252-264.

DOI: 10.1007/s11182-009-9223-6

Google Scholar

[7] Kiski, S.S., Ponomarev, A.N., Ageev, I.V., Kozeev, A.A., Yudovich, M.E. Investigation of carboxylate plasticizer modification potential in modified fine-grained concrete mixes (2012).

DOI: 10.5862/mce.34.6

Google Scholar

[8] Ponomarev, A.N., Egorushkin, V.E., Melnikova, N.V., Reshetnyak, A.A. Anomalous thermal conductivity in multiwalled carbon nanotubes with impurities and short-range order (2010) Journal of Physics: Conference Series, 248, Article number 012005.

DOI: 10.1088/1742-6596/248/1/012005

Google Scholar

[9] Kiski, S.S., Ponomarev, A.N., Ageev, I.V., Cun, C. Modification of the fine – aggregate concrete by high disperse silica fume and carbon nanoparticles containing modifiers (2014) Advanced Materials Research, 941-944, pp.430-435.

DOI: 10.4028/www.scientific.net/amr.941-944.430

Google Scholar

[10] Ponomarev, A.N. Vysokokachestvennyye betony. Analiz vozmozhnostey i praktika ispolzovaniya metodov nanotekhnologii [High-quality concrete. Analysis of the opportunities and the practice of using nanotechnology techniques] (2009).

Google Scholar

[11] Frolov, A.V., Chumadova, L.I., Cherkashin, A.V., Akimov, L.I. The economy of use and the impact of nanoparticles on properties of lightweight high-strength concrete (2014) Construction of Unique Buildings and Structures, 4 (19), pp.51-61. (rus).

DOI: 10.4028/www.scientific.net/amm.584-586.1416

Google Scholar

[12] Kovaleva, A. Yu., Belyayeva, Zh. V., Aubakirova, I. U, Staroverov, V. D. Opyt promyshlennogo primeneniya nanomodifitsirovannykh betonnykh smesey [Experience of industrial applications of nanomodified concrete mixtures] [web source] (22. 10. 2008) Ves beton, URL: http: /www. allbeton. ru/article/265/18. html (date of reference: 27. 09. 2014). (rus).

Google Scholar

[13] Pukharenko, Yu. V., Aubakirova, I. U., Staroverov, V. D., Gyunner, T. V., Kudobayev, M. K. Korrozionnostoykiye nanomodifitsirovannyye tsementnyye betony [Сorrosion-resistantnanomodified cement concrete] (2010).

Google Scholar

[14] Kishinevskaya, Ye.V., Vatin, N.I., Kuznetsov, V.D. Perspektivy primeneniya nanobetona v monolitnykh bolsheproletnykh rebrestykh perekrytiyakh s postnapryazheniyem [Prospects of application of nanomodified concrete in monolithic slabs with big span with post-tension] (2009).

Google Scholar

[15] EN 1992 Eurocode 2. Design of concrete structures.

Google Scholar

[16] Matveyeva, Ye. G. Povysheniye effektivnosti betona dobavkoy nanodispersnogo kremnezema [Improving the efficiency of concrete with the addition of nanosized silica] (2011).

Google Scholar

[17] Inozemtsev, A. S, Korolev, Ye.V. Osnovy razrabotki nanomodifitsirovannykh vysokoprochnykh legkikh betonov [Basics of Designing a high-strength lightweight nanomodified concrete] (2013) Nanotekhnologii v stroitelstve, 23, No. 1, 24 p. (rus).

Google Scholar

[18] Brozdnichenko, A.N., Ponomarev, A.N., Pronin, V.P., Rybalko, V.V. Magnetic properties of multiwall carbon nanotubes and astralenes in strong electric fields (2007).

DOI: 10.1134/s1027451007010223

Google Scholar

[19] Frolov, A.V., Chumadova, L.I., Cherkashin, A.V., Akimov, L.I. Prospects of use and impact of nanoparticles on the properties of high-strength concrete (2014) Applied Mechanics and Materials, 584-586, pp.1416-1424.

DOI: 10.4028/www.scientific.net/amm.584-586.1416

Google Scholar

[20] Nasibulina, L.I., Mudimela, P.R., Nasibulin, A.G., Koltsova, T.S., Tolochko, O.V., Kauppinen, E.I. Sintez uglerodnyh nanotrubok i nanovolokon na chasticah kremnezema i cementa [Synthesis of Carbon Nanotubes and Nanofibers on particles of Silica and Cement] (2010).

DOI: 10.1155/2009/526128

Google Scholar

[21] Nasibulina, L.I., Anoshkin, I.V., Shandakov, S.D., Nasibulin, A.G., Cwirzen, A., Mudimela, P.R., Habermehl-Cwirzen, K., Malm, J.E.M., Koltsova, T.S., Tian, Y., Vasilieva, E.S., Penttala, V., Tolochko, O.V., Karppinen, M.J., Kauppinen, E.I. Direct synthesis of carbon nanofibers on cement particles (2010).

DOI: 10.3141/2142-14

Google Scholar

[22] Barabanshchikov, Yu. G., Komarinskiy, M. V. Influence of superplasticizer S-3 on the technological properties of concrete mixtures (2014) Advanced Materials Research, 941-944, pp.780-785.

DOI: 10.4028/www.scientific.net/amr.941-944.780

Google Scholar

[23] Laukaitis, A., Keriene, J., Kligys, M., Mikulskis, D., Lekunaite, L. Influence of amorphous nanodispersive SiO2 additive on structure formation and properties of autoclaved aerated concrete (2010).

Google Scholar

[24] Van Broekhuizen, P., Van Broekhuizen, F., Cornelissen, R., Reijnders, L. Use of nanomaterials in the European construction industry and some occupational health aspects thereof (2011) Journal of Nanoparticle Research, 13(2), pp.447-462.

DOI: 10.1007/s11051-010-0195-9

Google Scholar

[25] Buzea, C., Pacheco, I. I., Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity (2007) Biointerphases, 2(4), pp. MR17-MR71.

DOI: 10.1116/1.2815690

Google Scholar

[26] Alenius, H., Catalán. J, Lindberg, H., et. al. Chapter 3 - Nanomaterials and Human Health (2014) Handbook of Nanosafety, pp.59-133.

DOI: 10.1016/b978-0-12-416604-2.00003-2

Google Scholar

[27] Pietroiusti, A., Magrini, A., Campagnolo, L. 2 - Mechanisms of nanomaterial toxicity (2014) Health and Environmental. Safety of Nanomaterials, pp.28-43.

DOI: 10.1533/9780857096678.1.28

Google Scholar

[28] Judy, J.D., Bertsch, P.M. Bioavailability, Toxicity, and Fate of Manufactured Nanomaterials in Terrestrial Ecosystems (2014) Advances in Agronomy, 123, pp.1-64.

DOI: 10.1016/b978-0-12-420225-2.00001-7

Google Scholar