[1]
Sheykin, A.E., Chehovskiy, Yu.V., Brusser, M.I. Struktura i svoystva tsementnyih betonov [Structure and properties of cement concrete] (1979) Struktura i svoystva tsementnyih betonov, Stroyizdat: Moscow, 344 p. (rus).
Google Scholar
[2]
Barabanshchikov, Yu.G. Vasilyev, A.S. The effectiveness of setting and hardening accelerators for sprayed concrete (2012) Magazine of Civil Engineering, 8(34), p.72–78, doi: 10. 5862/MCE. 34. 11. (rus).
DOI: 10.5862/mce.34.11
Google Scholar
[3]
Ponomarev, A.N., Shames, A.I., Katz, E.A., Panich, A.M., Mogilyansky, D., Mogilko, E., Grinblat, J., Belousov, V.P. Structural and magnetic resonance study of astralen nanoparticles (2009) Diamond and Related Materials, 18 (2-3), pp.505-510.
DOI: 10.1016/j.diamond.2008.10.056
Google Scholar
[4]
Nasibulin, A. G., Koltsova, T., Nasibulina, L. I., Anoshkin, I. V., Semencha, A., Tolochko, O. V., Kauppinen, E. I. A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles (2013).
DOI: 10.1016/j.actamat.2012.12.007
Google Scholar
[5]
Mudimela, P., Nasibulina, L., Nasibulin, A., Cwirzen, A., Valkeapaa, M., Habermehl-Cwirzen, K., Malm, J.E.M., Karppinen, M.J., Penttala, V., Koltsova, T., Tolochko, O.V., Kauppinen, E.I. Synthesis of carbon nanotubes and nanofibers on silica and cement matrix materials. Manuscript (2009).
DOI: 10.1155/2009/526128
Google Scholar
[6]
Ponomarev, A.N., Egorushkin, V.E., Melnikova, N.V. The role of structural inhomogeneities in the temperature behavior of the thermopower in metallized nanotubes with impurities (2009) Russian Physics Journal, 52(3), pp.252-264.
DOI: 10.1007/s11182-009-9223-6
Google Scholar
[7]
Kiski, S.S., Ponomarev, A.N., Ageev, I.V., Kozeev, A.A., Yudovich, M.E. Investigation of carboxylate plasticizer modification potential in modified fine-grained concrete mixes (2012).
DOI: 10.5862/mce.34.6
Google Scholar
[8]
Ponomarev, A.N., Egorushkin, V.E., Melnikova, N.V., Reshetnyak, A.A. Anomalous thermal conductivity in multiwalled carbon nanotubes with impurities and short-range order (2010) Journal of Physics: Conference Series, 248, Article number 012005.
DOI: 10.1088/1742-6596/248/1/012005
Google Scholar
[9]
Kiski, S.S., Ponomarev, A.N., Ageev, I.V., Cun, C. Modification of the fine – aggregate concrete by high disperse silica fume and carbon nanoparticles containing modifiers (2014) Advanced Materials Research, 941-944, pp.430-435.
DOI: 10.4028/www.scientific.net/amr.941-944.430
Google Scholar
[10]
Ponomarev, A.N. Vysokokachestvennyye betony. Analiz vozmozhnostey i praktika ispolzovaniya metodov nanotekhnologii [High-quality concrete. Analysis of the opportunities and the practice of using nanotechnology techniques] (2009).
Google Scholar
[11]
Frolov, A.V., Chumadova, L.I., Cherkashin, A.V., Akimov, L.I. The economy of use and the impact of nanoparticles on properties of lightweight high-strength concrete (2014) Construction of Unique Buildings and Structures, 4 (19), pp.51-61. (rus).
DOI: 10.4028/www.scientific.net/amm.584-586.1416
Google Scholar
[12]
Kovaleva, A. Yu., Belyayeva, Zh. V., Aubakirova, I. U, Staroverov, V. D. Opyt promyshlennogo primeneniya nanomodifitsirovannykh betonnykh smesey [Experience of industrial applications of nanomodified concrete mixtures] [web source] (22. 10. 2008) Ves beton, URL: http: /www. allbeton. ru/article/265/18. html (date of reference: 27. 09. 2014). (rus).
Google Scholar
[13]
Pukharenko, Yu. V., Aubakirova, I. U., Staroverov, V. D., Gyunner, T. V., Kudobayev, M. K. Korrozionnostoykiye nanomodifitsirovannyye tsementnyye betony [Сorrosion-resistantnanomodified cement concrete] (2010).
Google Scholar
[14]
Kishinevskaya, Ye.V., Vatin, N.I., Kuznetsov, V.D. Perspektivy primeneniya nanobetona v monolitnykh bolsheproletnykh rebrestykh perekrytiyakh s postnapryazheniyem [Prospects of application of nanomodified concrete in monolithic slabs with big span with post-tension] (2009).
Google Scholar
[15]
EN 1992 Eurocode 2. Design of concrete structures.
Google Scholar
[16]
Matveyeva, Ye. G. Povysheniye effektivnosti betona dobavkoy nanodispersnogo kremnezema [Improving the efficiency of concrete with the addition of nanosized silica] (2011).
Google Scholar
[17]
Inozemtsev, A. S, Korolev, Ye.V. Osnovy razrabotki nanomodifitsirovannykh vysokoprochnykh legkikh betonov [Basics of Designing a high-strength lightweight nanomodified concrete] (2013) Nanotekhnologii v stroitelstve, 23, No. 1, 24 p. (rus).
Google Scholar
[18]
Brozdnichenko, A.N., Ponomarev, A.N., Pronin, V.P., Rybalko, V.V. Magnetic properties of multiwall carbon nanotubes and astralenes in strong electric fields (2007).
DOI: 10.1134/s1027451007010223
Google Scholar
[19]
Frolov, A.V., Chumadova, L.I., Cherkashin, A.V., Akimov, L.I. Prospects of use and impact of nanoparticles on the properties of high-strength concrete (2014) Applied Mechanics and Materials, 584-586, pp.1416-1424.
DOI: 10.4028/www.scientific.net/amm.584-586.1416
Google Scholar
[20]
Nasibulina, L.I., Mudimela, P.R., Nasibulin, A.G., Koltsova, T.S., Tolochko, O.V., Kauppinen, E.I. Sintez uglerodnyh nanotrubok i nanovolokon na chasticah kremnezema i cementa [Synthesis of Carbon Nanotubes and Nanofibers on particles of Silica and Cement] (2010).
DOI: 10.1155/2009/526128
Google Scholar
[21]
Nasibulina, L.I., Anoshkin, I.V., Shandakov, S.D., Nasibulin, A.G., Cwirzen, A., Mudimela, P.R., Habermehl-Cwirzen, K., Malm, J.E.M., Koltsova, T.S., Tian, Y., Vasilieva, E.S., Penttala, V., Tolochko, O.V., Karppinen, M.J., Kauppinen, E.I. Direct synthesis of carbon nanofibers on cement particles (2010).
DOI: 10.3141/2142-14
Google Scholar
[22]
Barabanshchikov, Yu. G., Komarinskiy, M. V. Influence of superplasticizer S-3 on the technological properties of concrete mixtures (2014) Advanced Materials Research, 941-944, pp.780-785.
DOI: 10.4028/www.scientific.net/amr.941-944.780
Google Scholar
[23]
Laukaitis, A., Keriene, J., Kligys, M., Mikulskis, D., Lekunaite, L. Influence of amorphous nanodispersive SiO2 additive on structure formation and properties of autoclaved aerated concrete (2010).
Google Scholar
[24]
Van Broekhuizen, P., Van Broekhuizen, F., Cornelissen, R., Reijnders, L. Use of nanomaterials in the European construction industry and some occupational health aspects thereof (2011) Journal of Nanoparticle Research, 13(2), pp.447-462.
DOI: 10.1007/s11051-010-0195-9
Google Scholar
[25]
Buzea, C., Pacheco, I. I., Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity (2007) Biointerphases, 2(4), pp. MR17-MR71.
DOI: 10.1116/1.2815690
Google Scholar
[26]
Alenius, H., Catalán. J, Lindberg, H., et. al. Chapter 3 - Nanomaterials and Human Health (2014) Handbook of Nanosafety, pp.59-133.
DOI: 10.1016/b978-0-12-416604-2.00003-2
Google Scholar
[27]
Pietroiusti, A., Magrini, A., Campagnolo, L. 2 - Mechanisms of nanomaterial toxicity (2014) Health and Environmental. Safety of Nanomaterials, pp.28-43.
DOI: 10.1533/9780857096678.1.28
Google Scholar
[28]
Judy, J.D., Bertsch, P.M. Bioavailability, Toxicity, and Fate of Manufactured Nanomaterials in Terrestrial Ecosystems (2014) Advances in Agronomy, 123, pp.1-64.
DOI: 10.1016/b978-0-12-420225-2.00001-7
Google Scholar