[1]
Aleksandrovskiy, C.B. Raschet betonnykh i zhelezobetonnykh konstruktsiy na izmeneniya temperatury i vlazhnosti s uchetom polzuchesti [Calculation of temperature change and humidity in terms of concerete creep in concrete and reinforced concrete structures] (1973).
Google Scholar
[2]
Pulyayev, I.S. Metody regulirovaniya teplovogo rezhima betona pri uskorennom vozvedenii zhelezobetonnykh elementov pilonov vantovykh mostov. Diss. na soisk. uchen. step. kand. teh. nauk: Spets 05. 23. 05 [Methods of concrete thermal regime regulation during accelerated construction of reinforced concrete pier elements in cable bridges. Cand. Tech. sci. diss. ] (2010).
Google Scholar
[3]
Nguyen, D. Z. Temperaturnyy rezhim betonnykh gravitatsionnykh plotin. Diss. na soisk. uch. step. kand. teh. nauk. Spets 05. 23. 07 [Temperature regime in concrete gravity dams. Cand. tech. sci. diss. ] (2006) M., 176 p. (rus).
Google Scholar
[4]
Zaporozhets, I.D., Okorokov, S.D., Pariyskiy, A.A. Teplovydeleniye betona [Heat Liberation by Concrete] (1966) L. − M.: Stroyizdat, 316 p. (rus).
Google Scholar
[5]
Malinin, N.A. Issledovaniye termonapryazhennogo sostoyaniya massivnykh betonnykh konstruktsiy s peremennymi deformativnymi kharakteristikami. Diss. na soisk. uchen. step. kan. teh. nauk: Spets 05. 23. 01 [Research of thermal stressed state of mass concrete structures with changing deformations characteristics. Cand. tech. sci. diss. ] (1977).
Google Scholar
[6]
Semenov, K.V. Temperaturnoye i termonapryazhennoye sostoyaniye blokov betonirovaniya korpusa vysokogo davleniya v stroitelnyy period: Dis. na soisk. uchen. step. kan. teh. nauk: Spets 05. 23. 01 [Temperature and thermal stressed state of concreting blocks in a high pressure shell during the building period] (1990).
Google Scholar
[7]
Barabanshchikov, Y.G., Semenov, K.V. Increasing the plasticity of concrete mixes in hydrotechnical construction (2007) Power Technology and Engineering, 41(4), pp.197-200.
DOI: 10.1007/s10749-007-0038-8
Google Scholar
[8]
Barabanshchikov, Y.G., Semenov, K.V., Shevelev, M.V. Termicheskaya treshchinostoykost betona fundamentnykh plit [Thermal cracking resistance of concrete foundation mats] (2009) Populyarnoye betonovedeniye, 1, pp.70-76.
Google Scholar
[9]
Krylov, B.A. Nekotoryye voprosy tekhnologii proizvodstva rabot pri primenenii betona v kholodnoye vremya [Issues of production technologies in terms of winter concreting] (2012) Tekhnologii betonov, 1, pp.33-35.
Google Scholar
[10]
Ginzburg, S.M., Sheynker, N. Ya., Dobretsova, I.V., Voznesenskaya, N.V. Studies of thermal processes in concrete structures (2011) Proceedings of the VNIIG, 263, pp.87-97.
Google Scholar
[11]
Krat, T. Yu., Rukavishnikova, T.N. Assessment of temperature regime and thermo-stressed state of spillway units at different concreting conditions (2007) Proceedings of the VNIIG, 248, pp.77-85.
Google Scholar
[12]
Vasilyev, P.I., Ivanov, D.A., Kononov, Yu.I., Semenov, K.V., Starikov, O.P. Raschetnoye obosnovaniye razmerov blokov i posledovatelnosti betonirovaniya korpusa reaktora VG-400 s proverkoy na modeli 1/5 naturalnoy velichiny [Calculation analysis of concreting blocks and VG-400 reactor shell concreting sequence using a 1/5 scale model] (1988).
Google Scholar
[13]
Tsybin, A.M. Promt calculations routine for thermal stress state of a system of concrete blocks under construction (2000) Proceedings of the VNIIG, 237, pp.69-76.
Google Scholar
[14]
Trapeznikov, L.P. Temperaturnaya treshchinostoykost massivnykh betonnykh sooruzheniy [Thermal cracking resistance of mass concrete structures] (1986) M.: Energoatomizdat 272 p. (rus).
Google Scholar
[15]
Aniskin, N.A., Nguyen, D. Z. The numerical simulation of the temperature operation mode for a gravity dam made from the compacted concrete (2006) Construction materials, the equipment, technologies of the XXI century, 10, pp.30-32.
Google Scholar
[16]
Voylokov, I.A., Gorb, A.M. Osobennosti proyektirovaniya i stroitelstva konteynernykh ploshchadok v zimniy period [Aspects of container yard designing in the winter period] (2009) Magazine of Civil Engineering, 6(8), pp.44-46.
Google Scholar
[17]
Zinevich, L.V. Primeneniye chislennogo modelirovaniya pri proyektirovanii tekhnologii obogreva i vyderzhivaniya betona monolitnykh konstruktsiy [Using numeric simulation in designing heating technologies and concrete curing of monolith structures] (2011).
Google Scholar
[18]
Semenov, K.V., Barabanshchikov, Y.G. Termicheskaya treshchinostoykost massivnykh betonnykh fundamentnykh plit i yeye obespecheniye v stroitelnyy period zimoy [Maintenance of thermal cracking resistance in massive concrete base slabs during winter concreting] (2014).
Google Scholar
[19]
SNiP 52-01-2003. Concrete and reinforced concrete structures.
Google Scholar
[20]
SP 52-107-2007. Zhelezobetonnyye monolitnyye konstruktsii zdaniy [Reinforced concrete monolith structures]. (rus).
Google Scholar
[21]
SP 52-101-2003. Betonnyye i zhelezobetonnyye konstruktsii bez predvaritelnogo napryazheniya [Concrete and reinforced concrete structures without prestressing]. (rus).
Google Scholar
[22]
SP 41. 13330. 2012. Concrete and reinforced concrete structures of hydroengineering facilities.
Google Scholar
[23]
Altoubat, S.A., Lange D.A. Creep, shrinkage, and cracking of restrained concrete at early age (2001) ACI Materials Journal, 98(4), pp.323-331.
DOI: 10.14359/10401
Google Scholar
[24]
Holt, E., Leivo M. Cracking risks associated with early age shrinkage (2004) Cement and Concrete Composites, 26(5), pp.521-530.
DOI: 10.1016/s0958-9465(03)00068-4
Google Scholar
[25]
How-Jin, C., Hsien-Sheng, P., and Yi-Feng, C. Numerical Analysis of shrinkage stresses in a mass concrete (2004) Journal of the Chinese Institute of Engineers, 27(3), pp.357-365.
Google Scholar
[26]
Jaafar, M. S, Development of finite element computer code for thermal analysis of roller compacted concrete dams (2007) Advances in Engineering Software, 38, pp.886-895.
DOI: 10.1016/j.advengsoft.2006.08.040
Google Scholar
[27]
Larson, M. Thermal crack estimation in early age concrete-models and methods for practical application. Division of Structural Engineering, Lulea University of Technology, Doctoral Thesis (2003) 190 p.
Google Scholar
[28]
Lee, Y., Kim, J-K. Numerical analysis of the early age behavior of concrete structures with a hydration based microplane model (2009) Computers and Structures, 87, pp.1085-1101.
DOI: 10.1016/j.compstruc.2009.05.008
Google Scholar
[29]
Miyazawa, S., Koibuchi, K., Hiroshima, A., Ohtomo, T., Usui, T. Control of thermal cracking in mass concrete with blast-furnace slag cement (2010) Concrete Under Severe Conditions (CONCEC'10), pp.1487-1495.
DOI: 10.1201/b10552-204
Google Scholar
[30]
Ramachandran, V.S., Ralph, Paroli, M., Beaudoin, J. J., Delgado, A. H. Handbook of Thermal Analysis of Construction Materials (2002) USA, William Andrew Inc., 467 p.
Google Scholar
[31]
Se-Jin, J. Advanced Assessment of Cracking due to Heat of Hydration and Internal Restraint (2008) ACI Materials Journal, 105, July-August, pp.325-333.
DOI: 10.14359/19893
Google Scholar
[32]
Shengxing, W., Donghui, H. Estimation of cracking risk of concrete at early age based on thermal stress analysis (2011) Journal of Thermal Analysis and Calorimetry, v. 105, 1, pp.171-186.
DOI: 10.1007/s10973-011-1512-y
Google Scholar
[33]
Sprince, A., Pakrastinsh, L., Korjakins, A. Experimental study on creep of new concrete mixtures (2011) Civil Engineering '11 - 3rd International Scientific Conference, Proceedings 3, pp.20-26.
Google Scholar
[34]
Zhang, Z., Zhang, X., Wang, X., Zhang, T., Zhang, X. Merge Concreting and Crack Control Analysis of Mass-concrete Base Slab of Nuclear Power Plant (2011) Applied Mechanics and Materials, 94-96, pp.2107-2110.
DOI: 10.4028/www.scientific.net/amm.94-96.2107
Google Scholar
[35]
Zhang, X., Zhang, Z., Wang, J., Wang, X., Zhang, W., Cheng D. Simulation and test research on merge concreting at mass-concrete base slab of nuclear power plant (2011).
DOI: 10.1109/mace.2011.5988424
Google Scholar