Thermal Cracking Resistance in Massive Concrete Structures in the Winter Building Period

Article Preview

Abstract:

The article deals with issues of the thermal cracking resistance in massive concrete and reinforced concrete structures during the building period. The paper lists the calculation results of the NPP reactor foundation mat thermal stressed state and thermal cracking resistance. The research also considers the concrete hardening temperature influence on its thermo-physical and deformation characteristics. The deformation criterion is used to calculate the concrete thermal cracking resistance. In addition, the paper focuses on the assignment of safe concrete pouring technological parameters in the winter period. Furthermore, the article estimates the necessity of the structure peripheral electric heating during the building period.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

431-441

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Aleksandrovskiy, C.B. Raschet betonnykh i zhelezobetonnykh konstruktsiy na izmeneniya temperatury i vlazhnosti s uchetom polzuchesti [Calculation of temperature change and humidity in terms of concerete creep in concrete and reinforced concrete structures] (1973).

Google Scholar

[2] Pulyayev, I.S. Metody regulirovaniya teplovogo rezhima betona pri uskorennom vozvedenii zhelezobetonnykh elementov pilonov vantovykh mostov. Diss. na soisk. uchen. step. kand. teh. nauk: Spets 05. 23. 05 [Methods of concrete thermal regime regulation during accelerated construction of reinforced concrete pier elements in cable bridges. Cand. Tech. sci. diss. ] (2010).

Google Scholar

[3] Nguyen, D. Z. Temperaturnyy rezhim betonnykh gravitatsionnykh plotin. Diss. na soisk. uch. step. kand. teh. nauk. Spets 05. 23. 07 [Temperature regime in concrete gravity dams. Cand. tech. sci. diss. ] (2006) M., 176 p. (rus).

Google Scholar

[4] Zaporozhets, I.D., Okorokov, S.D., Pariyskiy, A.A. Teplovydeleniye betona [Heat Liberation by Concrete] (1966) L. − M.: Stroyizdat, 316 p. (rus).

Google Scholar

[5] Malinin, N.A. Issledovaniye termonapryazhennogo sostoyaniya massivnykh betonnykh konstruktsiy s peremennymi deformativnymi kharakteristikami. Diss. na soisk. uchen. step. kan. teh. nauk: Spets 05. 23. 01 [Research of thermal stressed state of mass concrete structures with changing deformations characteristics. Cand. tech. sci. diss. ] (1977).

Google Scholar

[6] Semenov, K.V. Temperaturnoye i termonapryazhennoye sostoyaniye blokov betonirovaniya korpusa vysokogo davleniya v stroitelnyy period: Dis. na soisk. uchen. step. kan. teh. nauk: Spets 05. 23. 01 [Temperature and thermal stressed state of concreting blocks in a high pressure shell during the building period] (1990).

Google Scholar

[7] Barabanshchikov, Y.G., Semenov, K.V. Increasing the plasticity of concrete mixes in hydrotechnical construction (2007) Power Technology and Engineering, 41(4), pp.197-200.

DOI: 10.1007/s10749-007-0038-8

Google Scholar

[8] Barabanshchikov, Y.G., Semenov, K.V., Shevelev, M.V. Termicheskaya treshchinostoykost betona fundamentnykh plit [Thermal cracking resistance of concrete foundation mats] (2009) Populyarnoye betonovedeniye, 1, pp.70-76.

Google Scholar

[9] Krylov, B.A. Nekotoryye voprosy tekhnologii proizvodstva rabot pri primenenii betona v kholodnoye vremya [Issues of production technologies in terms of winter concreting] (2012) Tekhnologii betonov, 1, pp.33-35.

Google Scholar

[10] Ginzburg, S.M., Sheynker, N. Ya., Dobretsova, I.V., Voznesenskaya, N.V. Studies of thermal processes in concrete structures (2011) Proceedings of the VNIIG, 263, pp.87-97.

Google Scholar

[11] Krat, T. Yu., Rukavishnikova, T.N. Assessment of temperature regime and thermo-stressed state of spillway units at different concreting conditions (2007) Proceedings of the VNIIG, 248, pp.77-85.

Google Scholar

[12] Vasilyev, P.I., Ivanov, D.A., Kononov, Yu.I., Semenov, K.V., Starikov, O.P. Raschetnoye obosnovaniye razmerov blokov i posledovatelnosti betonirovaniya korpusa reaktora VG-400 s proverkoy na modeli 1/5 naturalnoy velichiny [Calculation analysis of concreting blocks and VG-400 reactor shell concreting sequence using a 1/5 scale model] (1988).

Google Scholar

[13] Tsybin, A.M. Promt calculations routine for thermal stress state of a system of concrete blocks under construction (2000) Proceedings of the VNIIG, 237, pp.69-76.

Google Scholar

[14] Trapeznikov, L.P. Temperaturnaya treshchinostoykost massivnykh betonnykh sooruzheniy [Thermal cracking resistance of mass concrete structures] (1986) M.: Energoatomizdat 272 p. (rus).

Google Scholar

[15] Aniskin, N.A., Nguyen, D. Z. The numerical simulation of the temperature operation mode for a gravity dam made from the compacted concrete (2006) Construction materials, the equipment, technologies of the XXI century, 10, pp.30-32.

Google Scholar

[16] Voylokov, I.A., Gorb, A.M. Osobennosti proyektirovaniya i stroitelstva konteynernykh ploshchadok v zimniy period [Aspects of container yard designing in the winter period] (2009) Magazine of Civil Engineering, 6(8), pp.44-46.

Google Scholar

[17] Zinevich, L.V. Primeneniye chislennogo modelirovaniya pri proyektirovanii tekhnologii obogreva i vyderzhivaniya betona monolitnykh konstruktsiy [Using numeric simulation in designing heating technologies and concrete curing of monolith structures] (2011).

Google Scholar

[18] Semenov, K.V., Barabanshchikov, Y.G. Termicheskaya treshchinostoykost massivnykh betonnykh fundamentnykh plit i yeye obespecheniye v stroitelnyy period zimoy [Maintenance of thermal cracking resistance in massive concrete base slabs during winter concreting] (2014).

Google Scholar

[19] SNiP 52-01-2003. Concrete and reinforced concrete structures.

Google Scholar

[20] SP 52-107-2007. Zhelezobetonnyye monolitnyye konstruktsii zdaniy [Reinforced concrete monolith structures]. (rus).

Google Scholar

[21] SP 52-101-2003. Betonnyye i zhelezobetonnyye konstruktsii bez predvaritelnogo napryazheniya [Concrete and reinforced concrete structures without prestressing]. (rus).

Google Scholar

[22] SP 41. 13330. 2012. Concrete and reinforced concrete structures of hydroengineering facilities.

Google Scholar

[23] Altoubat, S.A., Lange D.A. Creep, shrinkage, and cracking of restrained concrete at early age (2001) ACI Materials Journal, 98(4), pp.323-331.

DOI: 10.14359/10401

Google Scholar

[24] Holt, E., Leivo M. Cracking risks associated with early age shrinkage (2004) Cement and Concrete Composites, 26(5), pp.521-530.

DOI: 10.1016/s0958-9465(03)00068-4

Google Scholar

[25] How-Jin, C., Hsien-Sheng, P., and Yi-Feng, C. Numerical Analysis of shrinkage stresses in a mass concrete (2004) Journal of the Chinese Institute of Engineers, 27(3), pp.357-365.

Google Scholar

[26] Jaafar, M. S, Development of finite element computer code for thermal analysis of roller compacted concrete dams (2007) Advances in Engineering Software, 38, pp.886-895.

DOI: 10.1016/j.advengsoft.2006.08.040

Google Scholar

[27] Larson, M. Thermal crack estimation in early age concrete-models and methods for practical application. Division of Structural Engineering, Lulea University of Technology, Doctoral Thesis (2003) 190 p.

Google Scholar

[28] Lee, Y., Kim, J-K. Numerical analysis of the early age behavior of concrete structures with a hydration based microplane model (2009) Computers and Structures, 87, pp.1085-1101.

DOI: 10.1016/j.compstruc.2009.05.008

Google Scholar

[29] Miyazawa, S., Koibuchi, K., Hiroshima, A., Ohtomo, T., Usui, T. Control of thermal cracking in mass concrete with blast-furnace slag cement (2010) Concrete Under Severe Conditions (CONCEC'10), pp.1487-1495.

DOI: 10.1201/b10552-204

Google Scholar

[30] Ramachandran, V.S., Ralph, Paroli, M., Beaudoin, J. J., Delgado, A. H. Handbook of Thermal Analysis of Construction Materials (2002) USA, William Andrew Inc., 467 p.

Google Scholar

[31] Se-Jin, J. Advanced Assessment of Cracking due to Heat of Hydration and Internal Restraint (2008) ACI Materials Journal, 105, July-August, pp.325-333.

DOI: 10.14359/19893

Google Scholar

[32] Shengxing, W., Donghui, H. Estimation of cracking risk of concrete at early age based on thermal stress analysis (2011) Journal of Thermal Analysis and Calorimetry, v. 105, 1, pp.171-186.

DOI: 10.1007/s10973-011-1512-y

Google Scholar

[33] Sprince, A., Pakrastinsh, L., Korjakins, A. Experimental study on creep of new concrete mixtures (2011) Civil Engineering '11 - 3rd International Scientific Conference, Proceedings 3, pp.20-26.

Google Scholar

[34] Zhang, Z., Zhang, X., Wang, X., Zhang, T., Zhang, X. Merge Concreting and Crack Control Analysis of Mass-concrete Base Slab of Nuclear Power Plant (2011) Applied Mechanics and Materials, 94-96, pp.2107-2110.

DOI: 10.4028/www.scientific.net/amm.94-96.2107

Google Scholar

[35] Zhang, X., Zhang, Z., Wang, J., Wang, X., Zhang, W., Cheng D. Simulation and test research on merge concreting at mass-concrete base slab of nuclear power plant (2011).

DOI: 10.1109/mace.2011.5988424

Google Scholar