[1]
Rekomendatsii po opredeleniyu oblastey effektivnogo ispolzovaniya stekloplastikovoy armaturyi. ISiA Gosstroya BSSR [Recommendations for the determination of the effective use of fiberglass reinforcement. State Committee for Construction of the Byelorussian SSR] (1973).
Google Scholar
[2]
Frolov, N.P. Stekloplastikovaya armatura i stekloplastbetonnyie konstruktsii [Fiberglass reinforcement and fiberglass concrete construction] (1980) Stroyizdat, p.104. (rus).
Google Scholar
[3]
Salia, G.S., Shagin, A.L. Concrete structures with non-metallic reinforcement (1980) Stroyizdat, p.144.
Google Scholar
[4]
Shagin, A.L. № 924317 Sposob izgotovleniya predvaritelno napryazhennyih betonnyih elementov. Byull. izobreteniy № 16, 1 [Method for manufacturing prestressed concrete elements. Bull. inventions] (1982) p.50. (rus).
Google Scholar
[5]
Berg, O. Ya. Fizicheskie osnovyi teorii prochnosti betona i zhelezobetona [Physical basis of the theory of the strength of concrete and reinforced concrete] (1962) Stroyizdat, p.96. (rus).
Google Scholar
[6]
Chebotareva, E.G. Nanomodified composites for construction application using epoksidianresin Stroyizdat, p.84.
Google Scholar
[7]
Erofeev, V.T., Bogatov, A.D., Bogatova, S.N., Kaznacheev, S.V., Smirnov, V.F. Influence of the op erating environment on the biological stability of construction materials Stroyizdat, pp.37-45.
Google Scholar
[8]
Frank, J. Reinforced plastics composites.
Google Scholar
[9]
Gaal, I. Power integral bases in composits of number fields.
Google Scholar
[10]
Gambarov, G. A Central tight spiral reinforced prestressed elements. Concrete and reinforced concrete (1977) Stroyizdat, pp.22-23.
Google Scholar
[11]
Gizdatullin, A.R., Hozin, V.G., Kuklin, A.N. Khusnutdinov, A.M. Features of tests and character of collapse of composite reinforcement.
Google Scholar
[12]
Interstate standard GOST 31938-2011 Reinforcing composite polymer for the reinforcement of concrete structures. General specifications.
Google Scholar
[13]
Lee, F.M. Chemistry of cement and concrete (1961) State Publishing House of literature for construction, architecture and building materials, p.646.
Google Scholar
[14]
Moskvin, V.M., Ivanov, F.M., Alekseev, S.N., Guzeev, E.A. Korroziya betona i zhelezobetona, metodyi ih zaschityi [Corrosion of concrete and reinforced concrete, methods of protection] (1980) Stroyizdat, p.536. (rus).
Google Scholar
[15]
Paranicheva, N.V., Nazmeeva, T.V. Amplification constructions using carbon composite materials.
Google Scholar
[16]
Pustovoitov, V.P. Beton v stekloplastikovoy oboyme. Beton i zhelezobeton [Concrete in a fiberglass cage. Concrete and reinforced concrete] (1972) Stroyizdat, pp.25-26. (rus).
Google Scholar
[17]
Svod pravil. Konstruktsii iz betona s kompozitnoy nemetallicheskoy armaturoy. Pravila proektirovaniya [Rulebook Construction of concrete with composite non-metallic reinforcing. Design Rules]. (rus).
Google Scholar
[18]
Shagin, A.L. Features stress-strain state of the structures of complex type. Research of work of building construction and structures (1980) Stroyizdat, pp.65-75.
Google Scholar
[19]
Stolyarov, O.N., Gorshkov, A.S. The use of high-strength textile materials in construction.
Google Scholar
[20]
Taylor H. Chemistry of cement (1996) World, p.560.
Google Scholar
[21]
Teplova, J.S., Kiski, S.S., Nemova, D.V., Sokolov, A.V. Design and construction of building elements using fiberglass reinforcing bars OOO CK, pp.12-14.
Google Scholar
[22]
Tikhonov, M.K. Korroziya i zaschita morskih sooruzheniy iz betona i zhelezobetona [Corrosion and protection of marine structures of concrete and reinforced concrete] (1962) USSR Academy of Sciences, p.120. (rus).
Google Scholar
[23]
Wang, N., Wang, Z., Weatherly, G.C. Formation of magnesium aluminate (spinel) in cast SiC particulate-reinforced Al (A356) metal matrix composites.
DOI: 10.1007/bf02647325
Google Scholar
[24]
Ying, Z.Q., Du, C.B., Wang, Y.Y. Numerical simulation of particle reinforced composite using extended finite element method.
Google Scholar