Influence of Cladding Material on the Vapor Permeability of Lightweight Expanded Clay Aggregate (LECA) Concrete

Article Preview

Abstract:

The demand for town houses using the constructions of lightweight conrete is growing rapidly in recent time. One of the most common building materials for cottage construction is lightweight aggregate blocks. An important role for lightweight expanded clay aggregate (LECA) concrete plays such a property as vapor permeability. This paper presents the results of vapor permeability test of the samples, the analysis and recommendations for construction of the building. These samples were taken from the LECA concrete blocks covered by unidentified cladding, of which one of the town houses was under construction in the North-West of Russia. An assumption has been made that the unidentified cladding may cause losses to the building’s wall enclosure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

529-536

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kaprielov, S.S., Batrakov, V.G., Shejnfel'd, A.V. Modificirovannye betony novogo pokolenija: real'nost' i perspektiva [Modified concretes of a new generation: reality and prospects] (1999) Beton i zhelezobeton, 6(501), pp.6-10. (rus).

Google Scholar

[2] Ying Bo Jiang, Xiao Rong Wang. Research on thermal and structural performances of shale ceramsite concrete (2010) Advanced Materials Research, 168-170, pp.885-888.

DOI: 10.4028/www.scientific.net/amr.168-170.885

Google Scholar

[3] Nkansaha, M. A., Alfred, A., Barthb, T., Francisb, G.W. The use of lightweight expanded clay aggregate (LECA) as sorbent for PAHs removal from water (2012) Journal of Hazardous Materials, 217–218, pp.360-365.

DOI: 10.1016/j.jhazmat.2012.03.038

Google Scholar

[4] Ardakani, A., Yazdani, M. The relation between particle density and static alastic moduli of lightweight expanded clay aggregates (2014) Applied Clay Science, 6(25), pp.28-34.

DOI: 10.1016/j.clay.2014.02.017

Google Scholar

[5] Hubertova, M., Hela, R. Durability of Lightweight Expanded Clay Aggregate Concrete (2013) Procedia Engineering, 65, pp.2-6.

DOI: 10.1016/j.proeng.2013.09.002

Google Scholar

[6] Bajare, D., Korjakins, A., Kazjonovs, J., Rozenstrauha, I. Pore structure of lightweight clay aggregate incorporate with non-metallic products coming from aluminium scrap recycling industry (2012).

DOI: 10.1016/j.jeurceramsoc.2011.07.039

Google Scholar

[7] Ducman, V., Mirtic, B. Water vapour permeability of lightweight concrete prepared with different types of lightweight aggregates (2014) Construction and Building Materials, 68, pp.314-319.

DOI: 10.1016/j.conbuildmat.2014.06.083

Google Scholar

[8] Mortazavi, M., Majlessi, M. Evaluation of silica fume effect on compressive strength of structural lightweight concrete containing LECA as lightweight aggregate (2012) Advanced Materials Research, 626, pp.344-349.

DOI: 10.4028/www.scientific.net/amr.626.344

Google Scholar

[9] Hago, A.W., Al-Nuaimi, A.S., Al-Saidy, A.H. Concrete blocks for thermal insulation in hot climate (2005) Cement and concrete research, 35, pp.1472-1479.

DOI: 10.1016/j.cemconres.2004.08.018

Google Scholar

[10] Vatin, N.I., Gorshkov, A.S., Nemova, D.V., Gamayunova, O.S., Tarasova, D.S. Humidity conditions of homogeneous wall from gas-concrete blocks with finishing plaster compounds (2014) Applied Mechanics and Materials, 670-671, pp.349-354.

DOI: 10.4028/www.scientific.net/amm.670-671.349

Google Scholar

[11] Graubner, C-A., Pohi, S. Sustainability-related quality of lightweight concrete masonry (2014) Concrete Plant and Precast Technology, 80, pp.122-124.

Google Scholar

[12] SP 23-101-2004(Set of rules). Proektirovanie teplovoj zashhity zdanij [Design of thermal protection of buildings]. (rus).

Google Scholar

[13] Vavilin, V.F., Korotaev, S. A., Kuznecov, N.M. Stroitel'naja fizika [Building physics]: Third Edition (2002) Izdatel'stvo Mordovskogo Universiteta: Third Edition, 58 p. (rus).

Google Scholar

[14] Processy teploobmena i teplovaja izoljacija [Processes of heat exchange and thermal insulation] [web source] URL: http: /www. startbase. ru/knowledge/articles/136/ (date of reference: 20. 09. 2014). (rus).

Google Scholar

[15] Nikolaev, S.V., Beljaev, V.S., Zyrjanov, V.S., Shalygina, E. Ju., Shtejman, B.I. Normali na proektirovanie i stroitel'stvo teplojeffektivnyh naruzhnyh sten zhilyh i obshhestvennyh zdanij iz oblegchennyh keramzitobetonnyh blokov [Normals for the design and construction of thermal efficiency of exterior walls of residential and public buildings of lightweight aggregate concrete blocks]: First Edition (2000).

Google Scholar

[16] Knat'ko, M.V., Efimenko, M.N., Gorshkov, A.S. K voprosu o dolgovechnosti i jenergojeffektivnosti sovremennyh ograzhdajushhih stenovyh konstrukcij zhilyh, administrativnyh i proizvodstvennyh zdanij [On the question of durability and energy efficiency of modern fencing wall construction of residential, administrative and industrial buildings] (2008).

Google Scholar

[17] Bazhenov, Ju.M. Tehnologija betona [Concrete technology]: First Edition (2002) Izdatel'stvo ASV: First Edition, 455 p. (rus).

Google Scholar

[18] Beskorovajnaja, O.N., Bychkov, D.S., Gaevskaja, Z.A. Bystromontiruemye zdanija iz legkogo nanomodificirovannogo betona [Quickly building of lightweight concrete nanomodified] (2014).

Google Scholar

[19] Soloshhenko, S.S. Vlazhnostnyj rezhim konstrukcii ventiliruemogo shtukaturnogo fasada [Humidity regime design ventilated stucco facade] (2010) Magazine of Civil Engineering, 8, pp.10-15. (rus).

Google Scholar

[20] Gorshkov, A.S., Vatin, N.I., Glumov, A.V. Vlijanie fiziko-tehnicheskih i geometricheskih harakteristik shtukaturnyh pokrytij na vlazhnostnyj rezhim odnorodnyh sten iz gazobetonnyh blokov [Influence of physical, technical and geometrical characteristics of plastering on the moisture conditions of homogeneous walls of concrete blocks] (2011).

Google Scholar

[21] GOST 25898-83 (Russian bibliographic standard). Materialy i izdelija stroitel'nye. Metody opredelenija soprotivlenija paropronicaniju. [Building materials and products. Methods for determination of resistance to water vapor transmission]. (rus).

Google Scholar

[22] Claisse, P. A., Elsayad, H. I., Ganjian, E. Water vapour and liquid permeabilitymeasurements in cementitious samples (2009) Advances in Cement Research, 2(21), pp.83-89.

DOI: 10.1680/adcr.8.00046

Google Scholar

[23] Nauchno-poznovatel'nyj internet-zhurnal Vse pro vodu", Chto takoe "tochka rosy" i dlja chego ona nuzhna? [Sci-show pleasing online magazine "All about the water, " What is the "dew point" and what is it for, ] [web source] URL: http: /pro8odu. ru/vidy-vody/rosa/tochka-rosy-opredelenie. html (date of reference: 25. 09. 2014). (rus).

Google Scholar

[24] Jradi, M., Riffat, S. Experimental and numerical investigation ofa dew-point cooling system for thermal comfort in buildings (2014) Applied Energy, 132, pp.524-535.

DOI: 10.1016/j.apenergy.2014.07.040

Google Scholar

[25] Peter A. Claisse. Water vapour and liquid permeability measurements in concrete (2014) Transport Properties of Concrete, 25, pp.234-235.

DOI: 10.1533/9781782423195.107

Google Scholar

[26] SNIP 23-02-2003 (Construction Norms and Regulation). Teplovaja zashhita zdanij [Thermal performance of the buildings]. (rus).

Google Scholar