Analysis of Behavior of a Lattice Girder According to Theory of Plasticity with Link Elements

Article Preview

Abstract:

The purpose of this work is to show the way that leads to losing of stability of a lattice girder, by gradual becoming plastic of elements. Elements that are allowed to become plastic are inserted into the program SAP2000 as link elements of appropriate characteristics, whereby there is made a numeric modeling of a problem. Finally, the possibility of significant reducing of lattice girder's weight is shown, which has a very favourable economic effect as a consequence

You might also be interested in these eBooks

Info:

Periodical:

Pages:

559-565

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zarić, B., Buđevac, D., Stipanić, B. Čelične konstrukcije u građevinarstvu [Steel Structures in the construction industry] (2002) Građevinska knjiga 372 p.

Google Scholar

[2] Lubliner, J. Plasticity theory (1990) MacMillan Publishing Company, 285 p.

Google Scholar

[3] Martin, J.B. Plasticity and Fundamental Design (1975) MIT Press, 364 p.

Google Scholar

[4] Johnson, W. Mellor, P.B. Engineering Plasticity (1973) Van Nostrand Reinhold Comp., London, 376 p.

Google Scholar

[5] Kovačič, B., Kamnik, R., Kapović, Z. Mathematical analysis of measured displacements with emphasis on polynomial interpolation (2009) Geodetski List, 63 (4), pp.315-327.

Google Scholar

[6] Ćosić, M., Brčić, S. Iterative Displacement Coefficient Method: Mathematical formulation and numerical analyses (2013) Gradjevinar, 65 (3), pp.199-211.

Google Scholar

[7] Kozem Šilih, E., Premrov, M., Šilih, S. Numerical analysis of the horizontal capacity of timber-framewall elements (2013) Civil-Comp Proceedings, pp.102-108.

DOI: 10.4203/ccp.102.127

Google Scholar

[8] Pintarič, K., Premrov, M. Mathematical modelling of timber-framed walls using fictive diagonal elements (2013) Applied Mathematical Modelling, 37 (16-17), pp.8051-8059.

DOI: 10.1016/j.apm.2013.02.050

Google Scholar

[9] Zeng, W., Larsen, J.M., Liu, G.R. Smoothing technique based crystal plasticity finite element modeling of crystalline materials (2014) International Journal of Plasticity, Vol. 65, pp.250-268.

DOI: 10.1016/j.ijplas.2014.09.007

Google Scholar

[10] Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal  plasticity  finite- element  modeling:  Theory , experiments, applications (2010).

DOI: 10.1016/j.actamat.2009.10.058

Google Scholar