[1]
Zarić, B., Buđevac, D., Stipanić, B. Čelične konstrukcije u građevinarstvu [Steel Structures in the construction industry] (2002) Građevinska knjiga 372 p.
Google Scholar
[2]
Lubliner, J. Plasticity theory (1990) MacMillan Publishing Company, 285 p.
Google Scholar
[3]
Martin, J.B. Plasticity and Fundamental Design (1975) MIT Press, 364 p.
Google Scholar
[4]
Johnson, W. Mellor, P.B. Engineering Plasticity (1973) Van Nostrand Reinhold Comp., London, 376 p.
Google Scholar
[5]
Kovačič, B., Kamnik, R., Kapović, Z. Mathematical analysis of measured displacements with emphasis on polynomial interpolation (2009) Geodetski List, 63 (4), pp.315-327.
Google Scholar
[6]
Ćosić, M., Brčić, S. Iterative Displacement Coefficient Method: Mathematical formulation and numerical analyses (2013) Gradjevinar, 65 (3), pp.199-211.
Google Scholar
[7]
Kozem Šilih, E., Premrov, M., Šilih, S. Numerical analysis of the horizontal capacity of timber-framewall elements (2013) Civil-Comp Proceedings, pp.102-108.
DOI: 10.4203/ccp.102.127
Google Scholar
[8]
Pintarič, K., Premrov, M. Mathematical modelling of timber-framed walls using fictive diagonal elements (2013) Applied Mathematical Modelling, 37 (16-17), pp.8051-8059.
DOI: 10.1016/j.apm.2013.02.050
Google Scholar
[9]
Zeng, W., Larsen, J.M., Liu, G.R. Smoothing technique based crystal plasticity finite element modeling of crystalline materials (2014) International Journal of Plasticity, Vol. 65, pp.250-268.
DOI: 10.1016/j.ijplas.2014.09.007
Google Scholar
[10]
Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite- element modeling: Theory , experiments, applications (2010).
DOI: 10.1016/j.actamat.2009.10.058
Google Scholar