[1]
Popesko, A.I. Rabotosposobnost zhelezobetonnykh konstruktsiy, podverzhennykh korrozii [Performance of corrodible reinforced concrete constructions] (1996) 182 p.
Google Scholar
[2]
Vasiljev, A.I. Veroyatnostnaya otsenka ostatochnogo resursa fizicheskogo sroka sluzhby zhelezobetonnykh mostov [Probabilistic estimation of the remaining life expectancy of the reinforced concrete bridges] (2002) Trudy TsNIIS, 208, pp.101-120.
Google Scholar
[3]
Bondarenko, V.M. Fenomenologiya kinetiki povrezhdeniya betona zhelezobetonnykh konstruktsiy, ekspluatiruyushchikhsya v agressivnoy srede [Phenomenology of damage kinetics in the reinforced concrete constructions, subject to aggressive environments] (2008).
Google Scholar
[4]
Corrosion of Steel in Concrete (1980) RILEM Report, 102 p.
Google Scholar
[5]
Metodika raschetnogo prognozirovaniya sroka sluzhby zhelezobetonnykh proletnykh stroyeniy avtodorozhnykh mostov [Method of predictive modeling of the estimated longevity in reinforced concrete slab spans of highway bridges] (2002).
Google Scholar
[6]
Benin, A.V. Accounting for effects of decreasing bond between concrete and rebars on seismic resistance of reinforced concrete structural elements (2005) Journal of Civil Engineering and Management, XI (3), pp.163-168.
DOI: 10.1080/13923730.2005.9636346
Google Scholar
[7]
Benin, A.V., Semenov, A.S., Semenov, S.G. Fracture simulation of reinforced concrete structure with account of bond degradation and concrete cracking under steel corrosion (2012).
DOI: 10.1201/b13165-49
Google Scholar
[8]
Benin, A.V., Semenov, A.S., Semenov, S.G. Fracture analysis of reinforced concrete bridge structure with account of concrete cracking under steel corrosion (2013) Advanced Materials Research, 831, pp.364-369.
DOI: 10.4028/www.scientific.net/amr.831.364
Google Scholar
[9]
Benin, A.V., Semenov, A.S., Semenov, S.G. Modeling of fracture process in concrete reinforced structures under steel corrosion (2010) Journal of Achievements in Materials and Manufacturing Engineering, 39, pp.168-175.
DOI: 10.1201/b13165-49
Google Scholar
[10]
Garanzha, I., Vatin, N. Analytical methods for determination a load capacity of concrete-filled tubes under axial compression (2014) Applied Mechanics and Materials, 633-634, pp.965-971.
DOI: 10.4028/www.scientific.net/amm.633-634.965
Google Scholar
[11]
Lubliner, J., Oliver, J., Oller, S., Onate, E. A Plastic-Damage Model for Concrete (1989) International Journal of Solids and Structures, 25 (3), pp.229-326.
DOI: 10.1016/0020-7683(89)90050-4
Google Scholar
[12]
Kupfer, H., Hilsdorf, H.K., Rusch, H. Behavior of concrete under biaxial stress (1969) Journal of the American Concrete Institute, 66, pp.656-666.
Google Scholar
[13]
Melnikov, B.E., Semenov, A.S. Fatigue damage accumulation under the complex varying loading (2014) Applied Mechanics and Materials, 617, pp.187-192.
DOI: 10.4028/www.scientific.net/amm.617.187
Google Scholar