[1]
Popov, E.P. Teorija i raschet gibkih uprugih sterzhnej [Theory and computation of flexible elastic rods] (1986) Teorija i raschet gibkih uprugih sterzhnej [Theory and computation of flexible elastic rods], 296 p. (rus).
Google Scholar
[2]
Frisch-Fay, R. Flexible Bars (1962) Flexible Bars, 220 p.
Google Scholar
[3]
Landau, L.D., Lifshitz E.M. Theory of Elasticity: Third Edition (1986) Theory of Elasticity: Third Edition, 187 p.
DOI: 10.1016/b978-0-08-057069-3.50006-1
Google Scholar
[4]
Gorodeckij, A.S., Evzerov, I.D. Komp'juternye modeli konstrukcij [Computer models of structures] (2009) Komp'juternye modeli konstrukcij [Computer models of structures], 394 p. (rus).
Google Scholar
[5]
Zienkiewicz, O.C., David Fox, Taylor, R.L. Chapter 13 ‒ A Nonlinear Geometrically Exact Rod Model (2014) The Finite Element Method for Solid and Structural Mechanics: Seventh Edition, 672 p.
DOI: 10.1016/b978-1-85617-634-7.00013-2
Google Scholar
[6]
Jung, P., Leyendecker, S., Linn, J., Ortiz, M. A discrete mechanics approach to the Cosserat rod theory ‒ Part 1: static equilibria (2010) International journal for numerical methods in engineering, 85 (1), pp.31-60.
DOI: 10.1002/nme.2950
Google Scholar
[7]
Nayfeh, A.H., Pai, P.F. Linear and Nonlinear Structural Mechanics (2004) Linear and Nonlinear Structural Mechanics, 754 p.
DOI: 10.1002/9783527617562
Google Scholar
[8]
Levy, R., Spillers, W.R. Analysis of Geometrically nonlinear structures: Second Edition (2003) Analysis of Geometrically nonlinear structures: Second Edition, 272 p.
DOI: 10.1007/978-94-017-0243-0
Google Scholar
[9]
Lalin, V.V. Razlichnye formy uravnenij nelinejnoj dinamiki uprugih sterzhnej [Different forms of equations of the dynamics of elastic rods] (2004) Trudy SPbGPU: SPb, 489, pp.121-128. (rus).
Google Scholar
[10]
Lalin, V.V., Javarov, A.V. Construction and testing of a finite element of (a) the geometrically non-linear bar of Bernoulli-Euler (2013) Housing Construction, 5, pp.51-54. (rus).
Google Scholar
[11]
Frank Pai, P. Problems in geometrically exact modeling of highly flexible beams (2014) Thin-walled structures, 76, pp.66-76.
DOI: 10.1016/j.tws.2013.11.008
Google Scholar
[12]
Zwillinger, D. Continuation Method (1992) Handbook of Differential Equations: Second Edition, pp.635-637.
DOI: 10.1016/b978-0-12-784391-9.50168-8
Google Scholar
[13]
Na, T. Y Computational Methods in Engineering Boundary Value Problem (1979) Mathematics in Science and Engineering, 145, 320 p.
Google Scholar
[14]
Fung, Y.C., Tong, P. Classical and Computational Solid Mechanics (2001) Advanced Series in Engineering Science, 1, 930 p.
Google Scholar
[15]
Grigolyuk, E.I., Shalashilin, V.I. Problems of Nonlinear Deformation: The Continuation Method Applied to Nonlinear Problems in Solid Mechanics (1991).
DOI: 10.1007/978-94-011-3776-8_4
Google Scholar
[16]
Temam, R., Miranville, A. Mathematical Modeling in Continuum Mechanics: Second Edition (2005) Mathematical Modeling in Continuum Mechanics: Second Edition, 356 p.
DOI: 10.1017/cbo9780511755422
Google Scholar