[1]
Paranicheva, N.V., Nazmeyeva, T.V. Usileniye stroitelnykh konstruktsiy s pomoshchyu uglerodnykh kompozitsionnykh materialov [Strengthening of structures using carbon composite materials] (2010).
Google Scholar
[2]
Klyuyev, S.V., Guryanov, Yu.V. Vneshneye armirovaniye izgibayemykh fibrobetonnykh izdeliy uglevoloknom [External reinforcement of bending fiber concretes products with carbon fiber products] (2013).
Google Scholar
[3]
Morozova, T.S., Kuznetsov, V.D. Vneshneye armirovaniye zhelezobetonnykh kolonn kompozitsionnym materialom na osnove uglevolokon [External reinforcement of concrete columns by composite materials based on carbon fibers] (2010).
Google Scholar
[4]
Echaabi, J., Trochu, F., Gauvin, R. Review of failure criteria of fibrous composite materials (1996) Polymer Composites, 6, pp.786-798.
DOI: 10.1002/pc.10671
Google Scholar
[5]
Moncada, A.M., Chattopadhyay, A., Bednarcyk, B.A., Arnold, S.M. Micromechanics-based progressive failure analysis of composite laminates using different constituent failure theories (2012).
DOI: 10.1177/0731684412456330
Google Scholar
[6]
Kaddour, A.S., Hinton, M.J. Maturity of 3D failure criteria for fibre-reinforced composites: Comparison between theories and experiments: Part B of WWFE-II (2013) Journal of Composite Materials, 47, pp.925-966.
DOI: 10.1177/0021998313478710
Google Scholar
[7]
Qian, Y., Zhou, G., Cai, D., Liu, W. Investigation of strength criterion for biaxial fiber-reinforced composite laminated plates (2013) Journal of Nanjing University of Aeronautics and Astronautics, 45, pp.179-185.
Google Scholar
[8]
Li, H., Kandare, E., Li, S., Wang, Y., Kandola, B.K., Myler, P., Horrocks, A.R. Micromechanical finite element analyses of fire-retarded woven fabric composites at elevated temperatures using unit cells at multiple length scales (2012).
DOI: 10.1016/j.commatsci.2011.11.019
Google Scholar
[9]
Li, H., Fan, X., Yan, C. Prediction of orthotropic mechanical properties of plain-weave composites with matrix voids using unit cells at multi-scales (2013) Polymer International, 62, pp.1029-1037.
DOI: 10.1002/pi.4388
Google Scholar
[10]
TU 6-48-53-90. Tkani steklyannyye marok T-23 i T-23R. Tekhnicheskiye usloviya. [Glass fabric brands of T-23 and T-23R. Specifications]. (rus).
Google Scholar
[11]
Vasiliev, V.V., Morozov, E.V. Mechanics and analysis of composite materials (2001) Elsevier Science Ltd. Oxford, 430 p.
Google Scholar
[12]
Nekliudova, E.A., Semenov, A.S., Melnikov, B.E., Semenov, S.G. Experimental research and finite element analysis of elastic and strength properties of fiberglass composite material (2014) Magazine of Civil Engineering, 3(47), pp.25-39.
DOI: 10.5862/mce.47.3
Google Scholar
[13]
Kristensen, R.M. Mekhanika kompozitsionnykh materialov [Mechanics of composite materials] (1982) Moscow: Mir, 336 p. (rus).
Google Scholar
[14]
Tsai, S.W. Composites Design: Think Composites; 4th edition (1988) Dayton, USA.
Google Scholar
[15]
Melnikov, B.E., Semenov, A.S. Creation and application of hierarchical sequence of material models for numerical analysis of elasto-plastic structures (1996) Z. angew. Math. Mech (ZAMM), 76. S. 2., pp.615-616.
Google Scholar
[16]
Kalinin, N.A., Kravtsov, V.I., Semenov, A.S., Il'in, A.V., Rybnikov, A.I., Getsov, L.B. Topical problems in ensuring safe operation of gas pipelines in the far north environment (2012) Strength of Materials, 44 (3), pp.259-267.
DOI: 10.1007/s11223-012-9379-0
Google Scholar
[17]
Kästner, M., Obst, M., Brummund, J., Thielsch, K., Ulbricht, V. Inelastic material behavior of polymers - Experimental characterization, formulation and implementation of a material model (2012) Mechanics of Materials, 52, pp.40-57.
DOI: 10.1016/j.mechmat.2012.04.011
Google Scholar