Finite Element Modeling of Steel Pipeline Reconstruction Using Fiberglass Composite Material

Article Preview

Abstract:

A stress state of the partially damaged underground steel pipeline after reconstruction by means of the fiberglass composite material is considered. The strength properties of the composite are determined experimentally. The effective elastic moduli of the composite are determined by means of the finite element homogenization. Tsai-Wu failure criterion is used for the composite part of the pipeline. The influence of geometrical parameters and loading conditions on the safety factor of the pipeline is analyzed and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

648-653

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Paranicheva, N.V., Nazmeyeva, T.V. Usileniye stroitelnykh konstruktsiy s pomoshchyu uglerodnykh kompozitsionnykh materialov [Strengthening of structures using carbon composite materials] (2010).

Google Scholar

[2] Klyuyev, S.V., Guryanov, Yu.V. Vneshneye armirovaniye izgibayemykh fibrobetonnykh izdeliy uglevoloknom [External reinforcement of bending fiber concretes products with carbon fiber products] (2013).

Google Scholar

[3] Morozova, T.S., Kuznetsov, V.D. Vneshneye armirovaniye zhelezobetonnykh kolonn kompozitsionnym materialom na osnove uglevolokon [External reinforcement of concrete columns by composite materials based on carbon fibers] (2010).

Google Scholar

[4] Echaabi, J., Trochu, F., Gauvin, R. Review of failure criteria of fibrous composite materials (1996) Polymer Composites, 6, pp.786-798.

DOI: 10.1002/pc.10671

Google Scholar

[5] Moncada, A.M., Chattopadhyay, A., Bednarcyk, B.A., Arnold, S.M. Micromechanics-based progressive failure analysis of composite laminates using different constituent failure theories (2012).

DOI: 10.1177/0731684412456330

Google Scholar

[6] Kaddour, A.S., Hinton, M.J. Maturity of 3D failure criteria for fibre-reinforced composites: Comparison between theories and experiments: Part B of WWFE-II (2013) Journal of Composite Materials, 47, pp.925-966.

DOI: 10.1177/0021998313478710

Google Scholar

[7] Qian, Y., Zhou, G., Cai, D., Liu, W. Investigation of strength criterion for biaxial fiber-reinforced composite laminated plates (2013) Journal of Nanjing University of Aeronautics and Astronautics, 45, pp.179-185.

Google Scholar

[8] Li, H., Kandare, E., Li, S., Wang, Y., Kandola, B.K., Myler, P., Horrocks, A.R. Micromechanical finite element analyses of fire-retarded woven fabric composites at elevated temperatures using unit cells at multiple length scales (2012).

DOI: 10.1016/j.commatsci.2011.11.019

Google Scholar

[9] Li, H., Fan, X., Yan, C. Prediction of orthotropic mechanical properties of plain-weave composites with matrix voids using unit cells at multi-scales (2013) Polymer International, 62, pp.1029-1037.

DOI: 10.1002/pi.4388

Google Scholar

[10] TU 6-48-53-90. Tkani steklyannyye marok T-23 i T-23R. Tekhnicheskiye usloviya. [Glass fabric brands of T-23 and T-23R. Specifications]. (rus).

Google Scholar

[11] Vasiliev, V.V., Morozov, E.V. Mechanics and analysis of composite materials (2001) Elsevier Science Ltd. Oxford, 430 p.

Google Scholar

[12] Nekliudova, E.A., Semenov, A.S., Melnikov, B.E., Semenov, S.G. Experimental research and finite element analysis of elastic and strength properties of fiberglass composite material (2014) Magazine of Civil Engineering, 3(47), pp.25-39.

DOI: 10.5862/mce.47.3

Google Scholar

[13] Kristensen, R.M. Mekhanika kompozitsionnykh materialov [Mechanics of composite materials] (1982) Moscow: Mir, 336 p. (rus).

Google Scholar

[14] Tsai, S.W. Composites Design: Think Composites; 4th edition (1988) Dayton, USA.

Google Scholar

[15] Melnikov, B.E., Semenov, A.S. Creation and application of hierarchical sequence of material models for numerical analysis of elasto-plastic structures (1996) Z. angew. Math. Mech (ZAMM), 76. S. 2., pp.615-616.

Google Scholar

[16] Kalinin, N.A., Kravtsov, V.I., Semenov, A.S., Il'in, A.V., Rybnikov, A.I., Getsov, L.B. Topical problems in ensuring safe operation of gas pipelines in the far north environment (2012) Strength of Materials, 44 (3), pp.259-267.

DOI: 10.1007/s11223-012-9379-0

Google Scholar

[17] Kästner, M., Obst, M., Brummund, J., Thielsch, K., Ulbricht, V. Inelastic material behavior of polymers - Experimental characterization, formulation and implementation of a material model (2012) Mechanics of Materials, 52, pp.40-57.

DOI: 10.1016/j.mechmat.2012.04.011

Google Scholar