A Posteriori Error Control at Numerical Solution of Plate Bending Problem

Article Preview

Abstract:

The classical approach to a posteriori error control considered in this paper bears on the counter variational principles of Lagrange and Castigliano. Its efficient implementation for problems of mechanics of solids assumes obtaining equilibrated stresses/resultants which, at the same time, are sufficiently close to the exact values. Besides, it is important that computation of the error bound with the use of such stresses/resultants would be cheap in respect to the arithmetic work. Following these guide lines, we expand the preceding results for elliptic partial differential equations and theory elasticity equations upon the problem of thin plate bending. We obtain guaranteed a posteriori error bounds of simple forms for solutions by the finite element method and discuss the algorithms of linear complexity for their computation. The approach of the paper also allows to improve some known general a posteriori estimates by means of arbitrary not equilibrated stress fields.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

674-680

Citation:

Online since:

January 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ladev`eze, P., Leguillon, D. Error estimate procedure in the finite element method and applications (1983) SIAM J. Numer. Anal., 20, p.485–509.

DOI: 10.1137/0720033

Google Scholar

[2] Ainsworth, M., Oden, J. T. A posteriori estimation in finite element analysis (2000) John Wiley & Sons, Inc., 240 p.

Google Scholar

[3] Luce, R., Wohlmuth, B. A local a posteriori error estimator based on equilibrated fluxes (2004) SIAM J. Num. Anal., 42, pp.1394-1414.

DOI: 10.1137/s0036142903433790

Google Scholar

[4] Vejchodsky, T. Local a posteriori error estimator based on the hypercircle method. In: Proc. of the European Congress on Computational Method in Applied Mechanics and Engrg. ECCOMAS, Yavaskyla, Finland, (2004).

Google Scholar

[5] P. Neittaanmaki, P., Repin, S. I. Reliable methods for computer simulation Error control and a posteriori estimates (2004) Elsevier, 305 p.

Google Scholar

[6] M. Ainsworth, M., L., Demkowicz, L., Kim, C-W. Analysis of the equilibrated residual method for а posterioti estimation on meshes with hanging nodes (2007) Computer Meth. Appl. Math. Engrg., 196 , 37-40, pp.3493-3507.

DOI: 10.1016/j.cma.2006.10.020

Google Scholar

[7] Braess, D., Schoberl, J. Equilibrated residual error estimator for Maxswell's equations (2008) Math. Comp., 77, pp.651-672.

DOI: 10.1090/s0025-5718-07-02080-7

Google Scholar

[8] Dorfler, W. A convergent adaptive algorithm for Poisson's equation (1996) SIAM J. Numer. Anal., 33, 3, pp.1106-1124.

DOI: 10.1137/0733054

Google Scholar

[9] Dorfler, W., Rumpf, M. An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation algorithm (1998) Mathematics of computation, 67, 224, pp.1361-1382.

DOI: 10.1090/s0025-5718-98-00993-4

Google Scholar

[10] Cochez-Dhondt, S., Nicaise, S. A posteriori error estimators based on equilibrated fluxes (2010) Computational methods in applied mathematics, 10, 1, p.49–68.

DOI: 10.2478/cmam-2010-0002

Google Scholar

[11] Rabus, R. A natural adaptive nonconforming FEM of quasi-optimal complexity (2010) Computational methods in applied mathematics, 10, 3, pp.315-325.

DOI: 10.2478/cmam-2010-0018

Google Scholar

[12] Anufriev, I. E., Korneev, V. G., Kostylev, V. S. Exactly equilibrated fields, can they be efficiently used for a posteriori error estimation? (2006).

Google Scholar

[13] Korneev, V. G. Prostyye algoritmy vychisleniya aposteriornyh ocenok chislennyh reshenii ellipticheskih yravnenii [Simple algorithms for computation of a posteriori bounds for numerical solutions of elliptic equations] (2011).

Google Scholar

[15] Verfurt, R. A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (1996) Wiley, 127 p.

Google Scholar

[16] P. Neittaanmaki, P., Repin, S. I. A posteriori error estimates for boundary-value problems related to the biharmonic operator (2001) East-West J. Numer. Math., 2, p.157–178.

DOI: 10.1515/jnma.2001.157

Google Scholar

[17] Adjerid, S. A posteriori error estimates for fourth-order elliptic problems (2002) Comput. Methods Appl. Mech. Eng., 191, p.2539–2559.

DOI: 10.1016/s0045-7825(01)00412-1

Google Scholar

[18] Liu, K. A Gradient Recovery-based a Posteriori Error Estimators for the Ciarlet - Raviart Formulation of the Second Biharmonic Equations (2007) Applied Mathematical Sciences, 1, 21, p.997 – 1007.

Google Scholar

[19] Beirao da Veiga, Niiranen, J., Stenberg, R. L. A posteriori error estimates for the Morley plate bending element (2007) Numer. Math., 106, p.165–179.

DOI: 10.1007/s00211-007-0066-1

Google Scholar

[20] Hansbo, P., Larson, M. G. A posteriori error estimates for continuous/discontinuous Galerkin approximations of the Kirchhoff–Love plate (2008) Preprint 2008: 10, Chalmers University of Technology, Geoteborg, 19 p.

DOI: 10.1007/s00466-015-1204-8

Google Scholar

[21] Georgoulis, E. H., Houston, P., Virtanen, J. An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems (2011) IMA Journal of Numerical Analysis, 31, p.281–298.

DOI: 10.1093/imanum/drp023

Google Scholar

[22] Korneev, V. G. Numerical solution in stresses of problems of shell theory using oblique-angled meshes (1981) USSR Computational Mathematics and Mathematical Physics, 21, 2, pp.184-194.

DOI: 10.1016/0041-5553(81)90018-5

Google Scholar

[23] Mikhlin, S.G. Variatsionnye methody v mathematicheskoi fizike [Variational methods in mathematical physics] (1970) Moskva , Nauka, 512 p. (rus).

Google Scholar

[24] Abovskii, N. P., Andreyev, N. P., Deruga, A. P. Variacionnye principy v teorii uprugosti i teorii obolochek [Variational principles in theory elasticity and shell theory] (1978) Moskva, Nauka, 288 p. (rus).

Google Scholar

[25] Korneev, V. G. Supershodimost' reshenii metoda konechnyh elementov v setochnyh normah [Super-convergence of finite element method solutions in mesh norms] (1982).

Google Scholar