[1]
Ladev`eze, P., Leguillon, D. Error estimate procedure in the finite element method and applications (1983) SIAM J. Numer. Anal., 20, p.485–509.
DOI: 10.1137/0720033
Google Scholar
[2]
Ainsworth, M., Oden, J. T. A posteriori estimation in finite element analysis (2000) John Wiley & Sons, Inc., 240 p.
Google Scholar
[3]
Luce, R., Wohlmuth, B. A local a posteriori error estimator based on equilibrated fluxes (2004) SIAM J. Num. Anal., 42, pp.1394-1414.
DOI: 10.1137/s0036142903433790
Google Scholar
[4]
Vejchodsky, T. Local a posteriori error estimator based on the hypercircle method. In: Proc. of the European Congress on Computational Method in Applied Mechanics and Engrg. ECCOMAS, Yavaskyla, Finland, (2004).
Google Scholar
[5]
P. Neittaanmaki, P., Repin, S. I. Reliable methods for computer simulation Error control and a posteriori estimates (2004) Elsevier, 305 p.
Google Scholar
[6]
M. Ainsworth, M., L., Demkowicz, L., Kim, C-W. Analysis of the equilibrated residual method for а posterioti estimation on meshes with hanging nodes (2007) Computer Meth. Appl. Math. Engrg., 196 , 37-40, pp.3493-3507.
DOI: 10.1016/j.cma.2006.10.020
Google Scholar
[7]
Braess, D., Schoberl, J. Equilibrated residual error estimator for Maxswell's equations (2008) Math. Comp., 77, pp.651-672.
DOI: 10.1090/s0025-5718-07-02080-7
Google Scholar
[8]
Dorfler, W. A convergent adaptive algorithm for Poisson's equation (1996) SIAM J. Numer. Anal., 33, 3, pp.1106-1124.
DOI: 10.1137/0733054
Google Scholar
[9]
Dorfler, W., Rumpf, M. An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation algorithm (1998) Mathematics of computation, 67, 224, pp.1361-1382.
DOI: 10.1090/s0025-5718-98-00993-4
Google Scholar
[10]
Cochez-Dhondt, S., Nicaise, S. A posteriori error estimators based on equilibrated fluxes (2010) Computational methods in applied mathematics, 10, 1, p.49–68.
DOI: 10.2478/cmam-2010-0002
Google Scholar
[11]
Rabus, R. A natural adaptive nonconforming FEM of quasi-optimal complexity (2010) Computational methods in applied mathematics, 10, 3, pp.315-325.
DOI: 10.2478/cmam-2010-0018
Google Scholar
[12]
Anufriev, I. E., Korneev, V. G., Kostylev, V. S. Exactly equilibrated fields, can they be efficiently used for a posteriori error estimation? (2006).
Google Scholar
[13]
Korneev, V. G. Prostyye algoritmy vychisleniya aposteriornyh ocenok chislennyh reshenii ellipticheskih yravnenii [Simple algorithms for computation of a posteriori bounds for numerical solutions of elliptic equations] (2011).
Google Scholar
[15]
Verfurt, R. A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (1996) Wiley, 127 p.
Google Scholar
[16]
P. Neittaanmaki, P., Repin, S. I. A posteriori error estimates for boundary-value problems related to the biharmonic operator (2001) East-West J. Numer. Math., 2, p.157–178.
DOI: 10.1515/jnma.2001.157
Google Scholar
[17]
Adjerid, S. A posteriori error estimates for fourth-order elliptic problems (2002) Comput. Methods Appl. Mech. Eng., 191, p.2539–2559.
DOI: 10.1016/s0045-7825(01)00412-1
Google Scholar
[18]
Liu, K. A Gradient Recovery-based a Posteriori Error Estimators for the Ciarlet - Raviart Formulation of the Second Biharmonic Equations (2007) Applied Mathematical Sciences, 1, 21, p.997 – 1007.
Google Scholar
[19]
Beirao da Veiga, Niiranen, J., Stenberg, R. L. A posteriori error estimates for the Morley plate bending element (2007) Numer. Math., 106, p.165–179.
DOI: 10.1007/s00211-007-0066-1
Google Scholar
[20]
Hansbo, P., Larson, M. G. A posteriori error estimates for continuous/discontinuous Galerkin approximations of the Kirchhoff–Love plate (2008) Preprint 2008: 10, Chalmers University of Technology, Geoteborg, 19 p.
DOI: 10.1007/s00466-015-1204-8
Google Scholar
[21]
Georgoulis, E. H., Houston, P., Virtanen, J. An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems (2011) IMA Journal of Numerical Analysis, 31, p.281–298.
DOI: 10.1093/imanum/drp023
Google Scholar
[22]
Korneev, V. G. Numerical solution in stresses of problems of shell theory using oblique-angled meshes (1981) USSR Computational Mathematics and Mathematical Physics, 21, 2, pp.184-194.
DOI: 10.1016/0041-5553(81)90018-5
Google Scholar
[23]
Mikhlin, S.G. Variatsionnye methody v mathematicheskoi fizike [Variational methods in mathematical physics] (1970) Moskva , Nauka, 512 p. (rus).
Google Scholar
[24]
Abovskii, N. P., Andreyev, N. P., Deruga, A. P. Variacionnye principy v teorii uprugosti i teorii obolochek [Variational principles in theory elasticity and shell theory] (1978) Moskva, Nauka, 288 p. (rus).
Google Scholar
[25]
Korneev, V. G. Supershodimost' reshenii metoda konechnyh elementov v setochnyh normah [Super-convergence of finite element method solutions in mesh norms] (1982).
Google Scholar