Modeling Nonlinear Deformation and Destruction Masonry under Biaxial Stresses Part 1 – Masonry as Simulation Object

Article Preview

Abstract:

Masonry is a complex multicomponent composite consisting of dissimilar materials (brick / stone and mortar). Masonry deformation process under loading depends on the mechanical characteristics of the basic composite materials, as well as of the parameters of the elements defining binding between brick and mortar being the interface elements. Traditional methods of masonry modeling are based on the use of generalized ("effective") mechanical properties of the composite as a continuant homogeneous continuant medium. This paper presents an overview and analysis of continuant masonry models adequately reflecting the process of elastic, and in some cases elastic-plastic masonry deformation within the composition of stone structural elements. The paper provides analysis of the experimental research results of masonry behaviour in a biaxial stress state at primary stresses of opposite signs; identifies masonry destruction mechanisms complying with the conditions of stress state. The work demonstrates the key role played by interface elements in the formation of masonry destruction processes. Based on destruction mechanisms deduced from experiments, there was developed a discrete model of masonry. A system of masonry strength criteria was proposed corresponding to the biaxial stress state conditions at primary stresses of opposite signs. For purposes of studying the elastic-plastic deformation and destruction of masonry, there was developed a technology of numerical experiment performance using calculation technologies with a stepwise tracking of stress-and-strain state, at step-by-step loading. The scope of this paper includes verification of modeling method and technology of numerical experiment at various parameters of interface elements defining binding between bricks and mortar.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

681-696

Citation:

Online since:

January 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Onishchik, L.I. Kamennye konstruktcii promyshlennykh i grazhdanskikh zdanii [Stone construction of industrial and civil buildings] (1939) Gosizdatelstvo stroitelnoi literatury, 208 p. (rus).

Google Scholar

[2] Geniev, G.A. O kriterii prochnosti kamennoi kladki pri ploskom napriazhennom sostoianii [On the strength criteria of masonry with plane stress state] (1979) Structural Mechanics and calculation constructions, 2, p.7–11. (rus).

Google Scholar

[3] Tiupin, G.A. Deformatcionnaia teoriia plastichnosti kamennoi kladki [Deformation theory plasticity of masonry] (1980) Structural Mechanics and calculation constructions, 6, p.28–30. (rus).

Google Scholar

[4] Geniev, G.A. Variant deformatcionnoi teorii plastichnosti betona [Deformation theory of concrete plasticity] (1969) Beton i zhelezobeton, 2, p.12–15. (rus).

Google Scholar

[5] Kashevarova, G.G., Trufanov, N.A. Chislennyi analiz effektivnykh uprugikh svoistv materiala kirpichnoi kladki. [Numerical analysis of the effective elastic properties of masonry] (2005).

Google Scholar

[6] Page, A.W. A non-linear analysis of the composite action of masonry walls on beams. (1979), Proc. Inst. Civ. Eng., Vol. 67, March, p.93–110.

Google Scholar

[7] Mistler, M., Anthoine, A., Butenweg, C. In-plane and out-of-plane homogenisation of masonry. (2007) Computer & Structures, 85, p.1321–1330.

DOI: 10.1016/j.compstruc.2006.08.087

Google Scholar

[8] Brasile, S., Casciaro, R., Formica, G. Finite Element formulation for nonlinear analysis of masonry walls. (2010) Computer & Structures, 88, p.135–143.

DOI: 10.1016/j.compstruc.2009.08.006

Google Scholar

[9] Uva, G., Salerno, G. Towards a multiscale analysis of periodic masonry brickwork: a FEM algorithm with damage and friction. (2006) International Journal of Solids and Structures, 43, p.3739–3769.

DOI: 10.1016/j.ijsolstr.2005.10.004

Google Scholar

[10] Iliushin, A.A. Ob odnoi teorii dlitelnoi prochnosti. [About one theory of long-term strength] (1967) Inzhenernyi zhurnal mekhaniki tverdogo tela, 3, p.21–35. (rus).

Google Scholar

[11] Iliushin, A.A. Mekhanika sploshnoi sredy [Mechanics of Continua] (1978) Izdatelstvovo Moskovskogo universiteta, 287 p. (rus).

Google Scholar

[12] Parton, V.Z., Morozov, E.M. Mekhanika uprugoplasticheskogo razrusheniia. Osnovy mekhaniki razrusheniia Izd. 3 [Mechanics of elastic-plastic destruction. Fundamentals of destruction mechanics] Third Edition (2008), LKI, 352 p. (rus).

Google Scholar

[13] Parton, V.Z., Morozov, E.M. Mekhanika uprugoplasticheskogo razrusheniia. Spetcialnye zadachi mekhaniki razrusheniia Izd. 3 [Mechanics of elastic-plastic destruction. Special tasks destruction mechanics] Third Edition (2008), LKI, 192 p. (rus).

Google Scholar

[14] Rabotnov, Iu.N. O mekhanizme dlitelnogo razrusheniia [About the mechanism long-term destruction] (1959) Voprosy prochnosti materialov i konstruktcii, p.5–7. (rus).

Google Scholar

[15] Rabotnov, Iu.N. Mekhanika deformiruemogo tverdogo tela [Deformable Solid Mechanics] (1998) Nauka, 712 p. (rus).

Google Scholar

[16] GOST 10180–90. Betony. Metody opredeleniia prochnosti po kontrolnym obraztcam [Concretes. Methods of determining the strength by control samples] (1995) Izdatelstvo standartov, 30p.

Google Scholar

[17] GOST 5802–86. Rastvory stroitelnye. Metody ispytanii [Mortars. Test methods] (1986), Minstroi Rossii, 17 p.

Google Scholar

[18] Burago, N.G. Modelirovanie razrusheniia uprugoplasticheskikh tel. [Modelling of elastoplastic bodies destruction] (2008) Vychislitelnaia mekhanika sploshnykh sred, Vol 1, No 4, p.5–20. (rus).

Google Scholar

[19] Romalis, N.B., Tamuzh, V.P. Razrushenie strukturno neodnorodnykh tel. [Destruction of structurally inhomogeneous bodies] (1989) Zinatne, 224 p. (rus).

Google Scholar

[20] Vildeman, V.E., Sokolkin, Iu.V., Tashkinov, A.A. Mekhanika neuprugogo deformirovaniia i razrusheniia kompozitcionnykh materialov. Pod red. Iu.V. Sokolkina. [Mechanics of inelastic deformation and destruction composite materials] (1997).

Google Scholar

[21] Gabor, A., Ferrier, E., Jacquelin, E., Hamelin, P. Analysis and modelling of the in-plane shear behaviour of hollow brick masonry panels. (2006) Construction and Building Materials, 20, p.308–321.

DOI: 10.1016/j.conbuildmat.2005.01.032

Google Scholar

[22] Tonkikh, G.P., Koshaev, V.V., Kabantcev, O.V. Eksperimentalnye issledovaniia nesushchei sposobnosti kombinirovannoi kamennoi kladki pri glavnykh nagruzkakh [Experimental researches the bearing capacity of masonry combined with major stresses] (2007).

Google Scholar

[23] Kopanitca, D.G., Kabantcev, O.V., Useinov, E.S. Eksperimentalnye issledovaniia fragmentov kirpichnoi kladki na deistvie staticheskoi i dinamicheskoi nagruzki [Experimental researches masonry fragments on the effect of static and dynamic loads] (2012).

Google Scholar

[24] Tonkikh, G.P., Kabantcev, O.V., Simakov, O.A., Simakov, A.B., Baev, S.M., Panfilov, P.S. Eksperimentalnye issledovaniia seismousileniia kamennoi kladki naruzhnymi betonnymi applikatciiami [Experimental researches seismic reinforcement of masonry by exterior concrete applications] (2011).

Google Scholar

[25] Trusov, P.V. Nekotorye voprosy nelineinoi mekhaniki deformiruemogo tverdogo tela (v poriadke obsuzhdeniia). [Some problems of nonlinear mechanics of solids (in order of discussion)] (2009).

Google Scholar

[26] Podgornyi, A.N. (i dr. ). Zadachi kontaktnogo vzaimodeistviia elementov konstruktcii [Problems of contact interaction of structural elements] (1989) Naukova dumka, 232 p. (rus).

Google Scholar

[27] Zernin, M.V. (i dr. ). Modelirovanie kontaktnogo vzaimodeistviia s ispolzovaniem mekhaniki kontaktnoi vsevdosredy" [Simulation of the contact interaction with mechanics "contact quasi environment, ] (2007).

Google Scholar

[28] Lukashevich, A.A., Rozin, L.A. O reshenii konstaktnykh zadach stroitelnoi mekhaniki s odnostoronnimi sviaziami i treniem metodom poshagovogo analiza [On the decision of contact problem of structural mechanics with unilateral constraints and friction by step-by-step analysis] (2013).

DOI: 10.5862/mce.36.9

Google Scholar

[29] Polyakov, S.V. Issledovaniya po seysmostoykosti krupnopanelnykh i kamennykh zdaniy [Research on seismic stability of large-panel and masonry buildings] (1962) Gosstroyizdat, 289 p. (rus).

Google Scholar

[30] Polyakov, S.V., Konovodchenko, V.I., Prochnost i deformatsii vibrokirpichnykh paneley pri perekose. [Strength and deformation vibrated brick panels at skewed] in the book Seysmostoykost sbornykh krupnoelementnykh zdaniy (1963).

Google Scholar

[31] Polyakov, S.V., Safargaliyev, S.M. Seysmostoykost zdaniy s nesushchimi kirpichnymi stenami [Seismic resistance of buildings with load-bearing brick walls] (1988) Gylym, 188 p. (rus).

Google Scholar

[32] Tonkikh, G. P., Kabantsev, O. V., Koshayev, V. V. Metodika eksperimentalnykh issledovaniy po usileniyu zdaniy iz kamennoy kladki zhelezobetonnymi applikatsiyami [Methodology of experimental research to strengthen masonry buildings by concrete applications] (2005).

Google Scholar

[33] Kozharinov, S. V. Issledovaniye deformatsiy kirpichnoy kladki pri deystvii gorizontalnykh nagruzok [Research deformations of brick masonry under the action of horizontal loads] in the book Dinamika i seysmostoykost zdaniy i sooruzheniy (1982).

Google Scholar

[34] Kopanitsa, D. G., Useinov, E.S. Dinamicheskiye svoystva fragmenta kirpichnoy kladki v protsesse razrusheniya ot deystviya szhimayushchey sily. [Dynamic properties of a fragment of brickwork in the process of destruction at the action of the compressive force] in the book Zhelezobetonnyye konstruktsii: Issledovaniya, proyektirovaniye, metodika prepodavaniya (2012).

Google Scholar

[35] Kabantsev, O.V., Chastnyye kriterii prochnosti kamennoy kladki dlya analiza uprugoplasticheskogo deformirovaniya [Partial criteria of masonry strength for elastic-plastic deformation] (2013).

Google Scholar

[36] GOST 8462–85. Materialy stenovyye. Metody opredeleniya predelov prochnosti pri szhatii i izgibe [Walling materials. Methods for determining the limits of the compressive strength and flexural] (1985) Izdatelstvo standartov, 6 p.

Google Scholar

[37] GOST 4. 233–86. Rastvory stroitelnyye. Nomenklatura pokazateley [Nomenclature of characteristics] (1995) Izdatelstvo standartov, 11 p.

Google Scholar

[38] GOST 24452–80. Betony. Metody opredeleniya prizmennoy prochnosti, modulya uprugosti i koeffitsiyenta Puassona [Concretes. Methods for determination the prism strength, elastic modulus and Poisson ratio] (1980) GOSSTROY SSSR, 13 p.

Google Scholar

[39] Antsibor, A.V., Brusser, M.I. Opredeleniye i otsenka prochnosti stroitelnogo rastvora i melkozernistogo betona v konstruktsiyakh [Identification and assessment strength mortar and concrete with fine aggregate in the construction] (2012).

Google Scholar

[40] Spravochnik proyektirovshchika promyshlennykh, zhilykh i obshchestvennykh zdaniy. Raschetno-teoreticheskiy. Pod redaktsiyey F.F. Umanskogo [Handbook designer of industrial, residential and public buildings. Settlement and theoretical. Edited by Umansky, F.F. ] (1972).

Google Scholar

[41] Polyakov, S.V., Safargaliyev, S.M. Monolitnost kamennoy kladki [Continuity of the masonry] (1991) Gylym, 160 p. (rus).

Google Scholar

[42] Karpilovskiy, V.S., Kriksunov, E.Z., Malyarenko, A.A., Mikitarenko, M.A., Perelmuter, A.V., Perelmuter, M.A. Vychislitelnyy kompleks SCAD [System SCAD] (2013) SCAD SOFT, ASV, 656 p. (rus).

Google Scholar

[43] Kabantsev, O.V., Tamrazyan, A.G. Uchet izmeneniy raschetnoy skhemy pri analize raboty konstruktsii. [Structural behavior analysis taken into account changes of design model] (2014) Magazine of Civil Engineering, 5, p.15–26. (rus).

Google Scholar

[44] Kabantsev, O.V. Verifikatsiya raschetnoy tekhnologii Montazh» programmnogo kompleksa "SCAD" [Verification of computational technology "Mountihg" from software complex "SCAD, ] (2011).

Google Scholar